• Title/Summary/Keyword: 에너지밴드갭

Search Result 310, Processing Time 0.025 seconds

유기 금속 화학 증착법에 의한 Si 기판 위에 GaP 층 성장시 에피의 초기 단계의 성장 매개 변수에 영향

  • Gang, Dae-Seon;Seo, Yeong-Seong;Kim, Seong-Min;Sin, Jae-Cheol;Han, Myeong-Su;Kim, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.209.1-209.1
    • /
    • 2013
  • GaP는 가시광선 발광다이오드을 얻을 수 있는 적절한 재료중의 하나로 해당영역의 파장에 대하여 높은 양자효율을 얻을 수 있고, 깊은 준위 재결합이 없기 때문에 GaP 녹색 및 As 첨가한 GaAsP 적색 LED 에 적용할 수 있습니다. 또한, 상온에서 2.2 eV 에 해당하는 넓은 에너지 밴드갭을 가지고 있으므로, 소음이 없는 자외선 검출기에도 적합합니다. 이 물질에 대한 소자들은 기존에 GaP 기판을 사용하였습니다. 최근, GaP 와 격자상수가 비슷한 Si 기판을 활용하여 그 위에 성장하는 방법에 대한 관심이 많아졌습니다. Si는 물리적 및 화학적으로 안정하고 딱딱한 소재이며 대면적 기판을 쉽게 얻을 수 있어 전자 기기 및 대규모 집적 회로의 좋은 소재입니다. Si 와 대조적으로 GaP은 깨지기 쉬운 재료이며 GaP 기판은 Si와 같은 대면적 기판을 얻을 수 없습니다. 이러한 문제의 한 가지 해결책은 Si 기판위에 GaP 층의 성장입니다. GaP 과 Si의 조합은 현재의 광전소자 들에 더하여 더 많은 응용프로그램들을 가능하게 할 것입니다. 그러나, Si 기판위에 GaP 성장 시 삼차원적 성장 및 역위상 경계면과 같은 문제점들이 발생하므로 질이 높고 균일한 결정의 GaP 를 얻기가 어렵습니다. 따라서, Si 에 GaP 의 성장시 초기 단계를 제어하는 성장 기술이 필요합니다. 본 연구에서는, 유기금속화학증착법을 이용하여 Si 기판위에 양질의 GaP를 얻을 수 있는 최적의 성장조건을 얻고자 합니다. 실험 조건은 Si에 GaP의 에피택셜 성장의 초기 단계에 영향을 주는 V/III 비율, 성장압력, 기판방향 등을 가변하는 조건으로 진행하였습니다. V/III 비율은 100~6400, 성장 압력은 76~380 Torr로 진행하였고, Si 기판은 just(001)과 2~6도 기울어진 (001) 기판을 사용하였습니다.

  • PDF

Characterization of Core/Shell PMMA/CdS Nanoparticles Synthesized by Surfactant-free Emulsion Polymerization (무유화 유화중합에 의해 합성된 Core/shell 형태 PMMA/CdS 나노입자의 특성분석)

  • Yoon, Hyojung;Rhym, Young-Mok;Shim, Sang Eun
    • Journal of Adhesion and Interface
    • /
    • v.13 no.4
    • /
    • pp.188-192
    • /
    • 2012
  • Herein, CdS-coated PMMA nanoparticles were prepared by in-situ surfactant-free emulsion copolymerization and subsequent CdS coating process. As-prepared CdS/PMMA hybrid particles had 201.7 nm in diameter. The amount of CdS nanocrystals in the hybrid particles was 10.37 wt% determined by TGA and elemental analysis. The size of CdS crystals was 3.55 nm preferentially grown in (111) plane. UV-vis spectrum of PMMA/CdS nanoparticles showed the significant blue-shift in optical illumination. The reason was found because the synthesized CdS nanocrystals on PMMA particles had a different band gap energy of 2.70 eV which was significantly higher than that of known-value of bulk CdS (2.41 eV) due to a quantum confinement effect.

4H-SiC Curvature VDMOSFET with 3.3kV Breakdown Voltage (3.3kV 항복 전압을 갖는 4H-SiC Curvature VDMOSFET)

  • Kim, Tae-Hong;Jeong, Chung-Bu;Goh, Jin-Young;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.916-921
    • /
    • 2018
  • In this paper, we analyzed the power MOSFET devices for high voltage and high current operation. 4H-SiC was used instead of Si to improve the static characteristics of the device. Since 4H-SiC has a high critical electric field due to wide band gap, 4H-SiC is more advantageous than Si in high voltage and high current operation. In the conventional VDMOSFET structure using 4H-SiC, the breakdown voltage is limited due to the electric field crowding at the edge of the p-base region. Therefore, in this paper, we propose a Curvature VDMOSFET structure that improves the breakdown voltage and the static characteristics by reducing the electric field crowding by giving curvature to the edge of the p-base region. The static characteristics of conventional VDMOSFET and curvature VDMOSFET are compared and analyzed through TCAD simulation. The Curvature VDMOSFET has a breakdown voltage of 68.6% higher than that of the conventional structure without increasing on-resistance.

Theoretical Study on the Selective Reduction of Chiral [2-(diphenyl hydroxy-methyl)pyrrolidine]-AlH Derivatives and Aromatic Ketone ([2-(diphenyl hydroxy-methyl)pyrrolidine]-AlH 유도체와 방향족 케톤의 선택적 환원에 대한 이론적 연구)

  • Lee, Chul Jae;Kim, Jong-Mi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.389-394
    • /
    • 2021
  • In this work, we study the properties of molecular structure and boundary orbital functions of the DPHMP-AlH and propiophenone and butyrophenone, which are forms of alkoxy-amine-aluminum derivatives. Furthermore, we investigate the effect on the selective reduction of the final products (R), (S)-phenylpropanol and (R), (S)-phenylbutanol by calculating the stereoscopic and thermodynamic parameters of the transition state. Considering the three-dimensional molecular structural stability, the transition status of (S) types DPHMP-AlH and alkylphenone was found to be more stable, resulting in the selective reductions of DPHM-AlH and alkylphenone from this result: (S)-(1)-phenylpropanol and (S)-(1)-phenylbutanol was confirmed that the formation was advantageous.

A Study on Bond Wire Fusing Analysis of GaN Amplifier and Selection of Current Capacity Considering Transient Current (GaN증폭기의 본드 와이어 용융단선 현상분석과 과도전류를 고려한 전류용량 선정에 대한 연구)

  • Woo-Sung, Yoo;Yeon-Su, Seok;Kyu-Hyeok, Hwang;Ki-Jun, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.537-544
    • /
    • 2022
  • This paper analyzes the occurrence and cause of bond wires fusing used in the manufacture of pulsed high power amplifiers. Recently GaN HEMT has been spotlight in the fields of electronic warfare, radar, base station and satellite communication. In order to produce the maximum output power, which is the main performance of the high-power amplifier, optimal impedance matching is required. And the material, diameter and number of bond wires must be determined in consideration of not only the rated current but also the heat generated by the transient current. In particular, it was confirmed that compound semiconductor with a wide energy band gap such as GaN trigger fusing of the bond wire due to an increase in thermal resistance when the design efficiency is low or the heat dissipation is insufficient. This data has been simulated for exothermic conditions, and it is expected to be used as a reference for applications using GaN devices as verified through IR microscope.

Morphology Control of Active Layers for Efficient Organic Indoor Photovoltaics (광활성층 모폴로지 제어를 통한 실내광 유기태양전지의 효율 향상 연구)

  • Yongchan Jang;Soyoung Kim;Jeonga Kim;Jongbok Kim;Wonho Lee
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.130-136
    • /
    • 2022
  • Recently, organic semiconductor based indoor photovoltaics have gained attention since they exhibit excellent photovoltaic performance than that of conventional Si-based photovoltaics. In this study, we synthesize the medium bandgap polymer of PTBT and optimize PTBT:PC71BM blend films by introducing solvent additives. To this end, we select DIO and CN solvent additives and vary their contents from 0 to 3 vol%. As a result, we produce the highest power conversion efficiency of 11.31% under LED 1000 lx conditions with DIO (1.5 vol%) + CN (0.5 vol%)

Theoretical Study on Structural Properties of Triptan Derivatives (트립탄 유도체의 구조적 특성에 관한 이론적 연구)

  • Chul Jae Lee;Ki Young Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.503-508
    • /
    • 2023
  • Tryptane derivatives are substances that treat acute migraines, and many studies have been conducted on analysis methods such as chromatography, electrochemistry, spectroscopy, and capillary electrophysiology. Recently, analytical chemists have become more interested in drug analysis and solving fundamental problems of biological importance. Therefore, in this study, the chemical properties of each derivative were investigated by calculating the total energy, band gap, electrostatic potential, and charge of Sumatriptan, Lizatriptan, Naratriptan, and Eletriptan using HyperChem8.0's semi-empirical PM3 method. As a result of this study, in the case of Sumatriptan, Naratriptan, and Eletriptan, chemical reactions are expected to proceed centering on oxygen and nitrogen atoms bonded to sulfur atoms. In addition, in the case of Rizatriptan without a sulfur atom, it was shown that the chemical reaction proceeds at the 17th and 19th nitrogens of the 5-membered heterocyclic compound.

Dependence of Electrical and Optical Properties on Substrate Temperatures of AZO Thin Films (기판온도에 의한 AZO 박막의 전기적 및 광학적 특성 변화)

  • Seong-Jun Kang;Yang-Hee Joung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1067-1072
    • /
    • 2023
  • We prepared AZO (Al2O3 : 3 wt %) thin films according to the substrate temperature using the pulsed laser deposition method and the structural, electrical, and optical properties of the thin films were investigated. The AZO thin film deposited at 400℃ showed the best (002) orientation and the FWHM was 0.38°. As a result of the investigation of electrical properties, it was confirmed that the carrier concentration and mobility increased and the resistivity decreased as the substrate temperature increased. The average transmittance in the visible light region showed a high value of 85% or more regardless of the substrate temperature. The Burstein-Moss effect, in which the carrier concentration would increase with increasing substrate temperature thereby widening the energy band gap, was also observed. The resistivity and the figure of merit of the AZO thin film deposited at a substrate temperature of 400℃ were 6.77 × 10-4 Ω·cm and 1.02 × 104-1·cm-1 respectively, showing the best value.

Effect of Working Pressure on the Structural, Electrical, and Optical Properties of GTZO Thin Films (공정압력이 GTZO 박막의 구조적, 전기적 및 광학적 특성에 미치는 영향)

  • Byeong-Kyun Choi;Yang-Hee Joung;Seong-Jun Kang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.39-46
    • /
    • 2024
  • In this study, GTZO(Ga-Ti-Zn-O) thin films were deposited at various working pressures (1~7mTorr) by RF magnetron sputtering to examine the structural, electrical, and optical properties. All GTZO thin films exhibited c-axis preferential growth regardless of working pressure, the GTZO thin film deposited at 1mTorr showed the most excellent crystallinity having 0.38˚ of FWHM. The average transmittance in the visible light region (400~800nm) showed 80% or more regardless of the working pressure. We could observed the Burstein-Moss effect that carrier concentration decrease with the increase of working pressure and thus the energy band gap is narrowed. Figure of merits of GTZO thin film deposited at 1mTorr showed the highest value of 9.08 × 103 Ω-1·cm-1, in this case resistivity and average transmittance in the visible light region were 5.12 × 10-4 Ω·cm and 80.64%, respectively.

Preparation of Al2O3-coated TiO2 Electrode for Recombination Blocking of Photoelectron in Dye-Sensitized Solar Cells (염료감응형 태양전지의 광전자 재결합 방지를 위한 Al2O3 코팅 TiO2 전극 제조)

  • Hwang, Kyung-Jun;Yoo, Seung-Joon;Jung, Sung-Hoon;Kim, Sun-Il;Lee, Jae-Wook
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.162-168
    • /
    • 2010
  • To increase the energy conversion efficiency of dye sensitized solar cells (DSSCs), it has been widely studied how to effectively transferred the electron generated from the adsorbed dye to the $TiO_{2}$ electrode for avoiding the recombination of injected electrons and iodide ions ($I^-/I_3^-$). For the blocking of the recombination, in this study, $Al_2O_3$-coated $TiO_{2}$ electrode was prepared and applied for DSSCs. In especial, the optimal preparation conditions of $Al_2O_3$ coated onto $TiO_{2}$ porous film was proposed for higher energy conversion efficiency. As a result, the solar cells fabricated from $Al_2O_3$-coated (i.e., particle size of bohemite sol : 100 nm) $TiO_{2}$ electrodes showed superior conversion efficiency (9.0%) compared to the bare $TiO_{2}$ electrodes (7.5%).