Preparation of Al2O3-coated TiO2 Electrode for Recombination Blocking of Photoelectron in Dye-Sensitized Solar Cells

염료감응형 태양전지의 광전자 재결합 방지를 위한 Al2O3 코팅 TiO2 전극 제조

  • Hwang, Kyung-Jun (Department of Chemical and Biochemical Engineering, Chosun University) ;
  • Yoo, Seung-Joon (Department of Environmental and Chemical Engineering, Seonam University) ;
  • Jung, Sung-Hoon (Department of Chemical and Biochemical Engineering, Chosun University) ;
  • Kim, Sun-Il (Department of Chemical and Biochemical Engineering, Chosun University) ;
  • Lee, Jae-Wook (Department of Chemical and Biochemical Engineering, Chosun University)
  • Received : 2009.11.17
  • Accepted : 2010.01.25
  • Published : 2010.04.10

Abstract

To increase the energy conversion efficiency of dye sensitized solar cells (DSSCs), it has been widely studied how to effectively transferred the electron generated from the adsorbed dye to the $TiO_{2}$ electrode for avoiding the recombination of injected electrons and iodide ions ($I^-/I_3^-$). For the blocking of the recombination, in this study, $Al_2O_3$-coated $TiO_{2}$ electrode was prepared and applied for DSSCs. In especial, the optimal preparation conditions of $Al_2O_3$ coated onto $TiO_{2}$ porous film was proposed for higher energy conversion efficiency. As a result, the solar cells fabricated from $Al_2O_3$-coated (i.e., particle size of bohemite sol : 100 nm) $TiO_{2}$ electrodes showed superior conversion efficiency (9.0%) compared to the bare $TiO_{2}$ electrodes (7.5%).

최근에 염료감응형 태양전지(dye-sensitized solar cells, DSSCs)의 에너지 변환 효율을 증가시키기 위한 방법으로 흡착된 염료에서 발생되는 광전자가 전해질 속의 산화/환원되는 요오드 이온($I_3^-/I^-$)과의 재결합(recombination)을 방지하기 위하여 발생된 광전자를 효율적으로 $TiO_{2}$ 전극을 통해 이동시키는 방법에 관한 연구가 활발히 연구되고 있다. 본 연구에서는 이러한 재결합을 방지하기 위하여, 졸-겔(sol-gel)법으로 합성한 보헤마이트(bohemite) 졸을 이용하여 $TiO_{2}$ 전극에 비해 높은 에너지 밴드갭(band-gap)을 가지고 있는 $Al_2O_3$가 코팅된 이중층의 다공질 나노 $TiO_{2}$ 전극을 제조하고 염료감응형 태양전지에 응용하였다. 특히, 다양한 입자의 크기가 조절된 보헤마이트 졸을 통해 최고의 에너지 변환 효율을 가진 $Al_2O_3$가 코팅된 $TiO_{2}$ 광전극 제조 조건을 조사하였다. 입자 크기 100 nm 보헤마이트 졸로부터 제조한 $Al_2O_3$가 코팅된 $TiO_{2}$ 전극이 순수 $TiO_{2}$로 제조한 광전극 층(7.5%)에 비해 높은 에너지 변환 효율(9.0%)을 보였다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. B. O'Regan and M. Gr$\ddot{a}$tzel, Nature, 353, 737 (1991) https://doi.org/10.1038/353737a0
  2. M. Gr$\ddot{a}$tzel, Prog. Photovolt. Res. Appl., 8, 171 (2000) https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U
  3. B. A. Gregg, Chemical Physics Letters, 258, 376 (1996) https://doi.org/10.1016/0009-2614(96)00681-1
  4. S. Hao, J. Wu, L. Fan, Y. Huang, J. Lin, and Y. Wei, Solar Energy, 76, 745 (2004) https://doi.org/10.1016/j.solener.2003.12.010
  5. J. W. Lee, K. J. Hwang, S. H. Roh, and S. I. Kim, J. Korean Ind. Eng. Chem., 18, 356 (2007)
  6. A. Kay and M. Gr$\ddot{a}$tzel, Chem. Mater., 14, 2930 (2002) https://doi.org/10.1021/cm0115968
  7. S. S. Kim, J. H. Yum, and Y. E. Sung, Sol. Energy Mater. Sol. Cells, 79, 495 (2003) https://doi.org/10.1016/S0927-0248(03)00065-5
  8. E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, J. Am. Chem. Soc. 125, 475 (2002) https://doi.org/10.1021/ja027945w
  9. J. H. Yum, S. Nakade, D. Y. Kim, and S. Yanagida, J. Phys. Chem. B, 110, 3215 (2005) https://doi.org/10.1021/jp0564593
  10. K. Kalyanasundaram and M. Gr$\ddot{a}$tzel, Micelles, Microemulsions, Monolayers, Int. Symp. 579 (1998)
  11. G. R. A. Kumara, A. Konno, and K. Tennakone, Chem. Lett., 180 (2001)
  12. K. Tennakone, J. Bandara, P. K. M. Bandaranayake, G. R. A. Kumara, and A. Konno, Japn. J. Appl. Phys., Part 2: Lett., 40, 732 (2001) https://doi.org/10.1143/JJAP.40.L732
  13. G. Kumara, K. Tennakone, V. P. S. Perera, A. Konno, S. Kaneko, and M. Okuya, J. Phys. D-Appl. Phys., 34, 868 (2001) https://doi.org/10.1088/0022-3727/34/6/306
  14. S. Chappel, S. G. Chen, and A. Zaban, Langmuir, 18, 3336 (2002) https://doi.org/10.1021/la015536s
  15. S. J. Yoo, D. H. Kwak, U. Y. Hwang, H. S. Park, H. S. Yoon, and H. D. Jang, Korean Chem. Eng. Res., 46, 543 (2008)
  16. K. J. Hwang, J. W. Lee, H. S. Yoon, H. D. Jang, J. G. Kim, J. S. Yang, and S. J. Yoo, Bull. Korean Chem. Soc., 30, 2365 (2009) https://doi.org/10.5012/bkcs.2009.30.10.2365
  17. B. E. Yoldas, Amer. Ceram. Soc. Bull., 54, 289 (1975)
  18. G. G. Christoph, Clays Clay Miner. Proc. Conf., 27, 81 (1979) https://doi.org/10.1346/CCMN.1979.0270201
  19. K. J. Hwang, S. J. Yoo, S. H. Jung, D. W. Park, S. I. Kim, and J. W. Lee, Bull. Korean Chem. Soc., 30, 172 (2009) https://doi.org/10.5012/bkcs.2009.30.1.172
  20. G. G. Christoph, Clays Clay Miner. Proc. Conf., 27, 81 (1979) https://doi.org/10.1346/CCMN.1979.0270201
  21. J. K. Burdett, J. Am. Chem. Soc., 109, 3639 (1987) https://doi.org/10.1021/ja00246a021
  22. P. Scherrer, Math. Phys., 2, 98 (1918)
  23. C. J. Brinker and G. W. Scherer, Sol-Gel Science; Academic press: San Diego, U. S. A. (1990)
  24. O. T. A. Patrocinio, E. B. Paniago, R. M. Paniago, and N. Y. M. Iha, Appl. Surf. Sci., 254, 1874 (2008) https://doi.org/10.1016/j.apsusc.2007.07.185
  25. J. F. Moudler and W. F. Stickle, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Praitie, MN. (1992)
  26. Q. Wang, J-E. Moser, and M. Gr$\ddot{a}$tzel, J. Phys. Chem. B, 109, 14945 (2005) https://doi.org/10.1021/jp052768h
  27. G. P. Kalaignan and Y. S. Kang, J. Photochem. Photobiol. CPhotochem. Rev., 7, 17 (2006) https://doi.org/10.1016/j.jphotochemrev.2006.03.003
  28. T. Hoshikawa, T. Ikebe, R. Kikuchi, and K. Eguchi, Electrochimica Acta, 51, 5289 (2006)