• Title/Summary/Keyword: 얼굴 성분 검출

Search Result 52, Processing Time 0.025 seconds

Welfare Interface using Multiple Facial Features Tracking (다중 얼굴 특징 추적을 이용한 복지형 인터페이스)

  • Ju, Jin-Sun;Shin, Yun-Hee;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.75-83
    • /
    • 2008
  • We propose a welfare interface using multiple fecial features tracking, which can efficiently implement various mouse operations. The proposed system consist of five modules: face detection, eye detection, mouth detection, facial feature tracking, and mouse control. The facial region is first obtained using skin-color model and connected-component analysis(CCs). Thereafter the eye regions are localized using neutral network(NN)-based texture classifier that discriminates the facial region into eye class and non-eye class, and then mouth region is localized using edge detector. Once eye and mouth regions are localized they are continuously and correctly tracking by mean-shift algorithm and template matching, respectively. Based on the tracking results, mouse operations such as movement or click are implemented. To assess the validity of the proposed system, it was applied to the interface system for web browser and was tested on a group of 25 users. The results show that our system have the accuracy of 99% and process more than 21 frame/sec on PC for the $320{\times}240$ size input image, as such it can supply a user-friendly and convenient access to a computer in real-time operation.

Normalized Region Extraction of Facial Features by Using Hue-Based Attention Operator (색상기반 주목연산자를 이용한 정규화된 얼굴요소영역 추출)

  • 정의정;김종화;전준형;최흥문
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6C
    • /
    • pp.815-823
    • /
    • 2004
  • A hue-based attention operator and a combinational integral projection function(CIPF) are proposed to extract the normalized regions of face and facial features robustly against illumination variation. The face candidate regions are efficiently detected by using skin color filter, and the eyes are located accurately nil robustly against illumination variation by applying the proposed hue- and symmetry-based attention operator to the face candidate regions. And the faces are confirmed by verifying the eyes with the color-based eye variance filter. The proposed CIPF, which combines the weighted hue and intensity, is applied to detect the accurate vertical locations of the eyebrows and the mouth under illumination variations and the existence of mustache. The global face and its local feature regions are exactly located and normalized based on these accurate geometrical information. Experimental results on the AR face database[8] show that the proposed eye detection method yields better detection rate by about 39.3% than the conventional gray GST-based method. As a result, the normalized facial features can be extracted robustly and consistently based on the exact eye location under illumination variations.

Object Segmentation for Image Transmission Services and Facial Characteristic Detection based on Knowledge (화상전송 서비스를 위한 객체 분할 및 지식 기반 얼굴 특징 검출)

  • Lim, Chun-Hwan;Yang, Hong-Young
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.26-31
    • /
    • 1999
  • In this paper, we propose a facial characteristic detection algorithm based on knowledge and object segmentation method for image communication. In this algorithm, under the condition of the same lumination and distance from the fixed video camera to human face, we capture input images of 256 $\times$ 256 of gray scale 256 level and then remove the noise using the Gaussian filter. Two images are captured with a video camera, One contains the human face; the other contains only background region without including a face. And then we get a differential image between two images. After removing noise of the differential image by eroding End dilating, divide background image into a facial image. We separate eyes, ears, a nose and a mouth after searching the edge component in the facial image. From simulation results, we have verified the efficiency of the Proposed algorithm.

  • PDF

The Facial Area Extraction Using Multi-Channel Skin Color Model and The Facial Recognition Using Efficient Feature Vectors (Multi-Channel 피부색 모델을 이용한 얼굴영역추출과 효율적인 특징벡터를 이용한 얼굴 인식)

  • Choi Gwang-Mi;Kim Hyeong-Gyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1513-1517
    • /
    • 2005
  • In this paper, I make use of a Multi-Channel skin color model with Hue, Cb, Cg using Red, Blue, Green channel altogether which remove bight component as being consider the characteristics of skin color to do modeling more effective to a facial skin color for extracting a facial area. 1 used efficient HOLA(Higher order local autocorrelation function) using 26 feature vectors to obtain both feature vectors of a facial area and the edge image extraction using Harr wavelet in image which split a facial area. Calculated feature vectors are used of date for the facial recognition through learning of neural network It demonstrate improvement in both the recognition rate and speed by proposed algorithm through simulation.

Effective Acne Detection using Component Image a* of CIE L*a*b* Color Space (CIE L*a*b* 칼라 공간의 성분 영상 a*을 이용한 효과적인 여드름 검출)

  • Park, Ki-Hong;Noh, Hui-Seong
    • Journal of Digital Contents Society
    • /
    • v.19 no.7
    • /
    • pp.1397-1403
    • /
    • 2018
  • Today, modern people perceive skin care as part of their physical health care, and acne is a common skin disease problem that is found on the face. In this paper, an effective acne detection algorithm using CIE $L^*a^*b^*$ color space has been proposed. It is red when the pixel value of the component image $a^*$ is a positive number, so it is suitable for detecting acne in skin image. First, the skin image based on the RGB color space is subjected to light compensation through color balancing, and converted into a CIE $L^*a^*b^*$ color space. The extracted component image $a^*$ was normalized, and then the skin and acne area were estimated with the threshold values. Experimental results show that the proposed method detects acne more effectively than the conventional method based on brightness information, and the proposed method is robust against the reflected light source.

A block-based face detection algorithm for the efficient video coding of a videophone (효율적인 화상회의 동영상 압축을 위한 블록기반 얼굴 검출 방식)

  • Kim, Ki-Ju;Bang, Kyoung-Gu;Moon, Jeong-Mee;Kim, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1258-1268
    • /
    • 2004
  • We propose a new fast, algorithm which is used for detecting frontal face in the frequency domain based on human skin-color using OCT coefficient of dynamic image compression and skin color information. The region where each pixel has a value of skin-color were extracted from U and V value based on DCT coefficient obtained in the process of Image compression using skin-color map in the Y, U, V color space A morphological filter and labeling method are used to eliminate noise in the resulting image We propose the algorithm to detect fastly human face that estimate the directional feature and variance of luminance block of human skin-color Then Extraction of face was completed adaptively on both background have the object analogous to skin-color and background is simple in the proposed algorithm The performance of face detection algorithm is illustrated by some simulation results earned out on various races We confined that a success rate of 94 % was achieved from the experimental results.

TFT-LCD Defect Detection Using Double-Self Quotient Image (이중 SQI를 이용한 TFT-LCD 결함 검출)

  • Park, Woon-Ik;Lee, Kyu-Bong;Kim, Se-Yoon;Park, Kil-Houm
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.6
    • /
    • pp.604-608
    • /
    • 2008
  • The TFT-LCD image allows non-uniform illumination variation and that is one of main difficulties of finding defect region. The SQI (self quotient image) has the HPF (high pass filter) shape and is used to reduce low frequency-lightness component. In this paper, we proposed the TFT-LCD defect-enhancement algorithm using characteristics of the SQI, that is the SQI has low-frequency flattening effect and maintains local variation. The proposed method has superior flattening effect and defect-enhancement effect compared with previous the TFT-LCD image preprocessing.

Hand Gesture Recognition Using HMM(Hidden Markov Model) (HMM(Hidden Markov Model)을 이용한 핸드 제스처인식)

  • Ha, Jeong-Yo;Lee, Min-Ho;Choi, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.291-298
    • /
    • 2009
  • In this paper we proposed a vision based realtime hand gesture recognition method. To extract skin color, we translate RGB color space into YCbCr color space and use CbCr color for the final extraction. To find the center of extracted hand region we apply practical center point extraction algorithm. We use Kalman filter to tracking hand region and use HMM(Hidden Markov Model) algorithm (learning 6 type of hand gesture image) to recognize it. We demonstrated the effectiveness of our algorithm by some experiments.

  • PDF

The Result of the Pigment Analysis of the Mural in Ssangyeongchong (Tomb of Two Pillars) from Goguryeo (고구려(高句麗) 쌍영총(雙楹塚) 벽화(壁畫)의 안료분석(顔料分析))

  • Yu, Heisun
    • Conservation Science in Museum
    • /
    • v.6
    • /
    • pp.47-54
    • /
    • 2005
  • The elements of the pigments used on the wall painting in Ssangyeongchong (Tomb of Two Pillars) from Goguryeo in the Nampo area of Pyeongyang were analyzed to confirm their mineral compositions and features of the painting. Specifically, the non-destructive X-ray fluorescence spectrometer (XRF) was used. On the other hand, the mineral composition of the background and pigment layers were analyzed using an X-ray diffractometer (XRD). The results of these analyses suggested that the lips of the characters in the painting were painted with HgS, and their faces, painted with HgS(Cinnabar/ vermilion) mixed with CaCO3. Note that lead white pigment [2PbCO3·Pb(OH)2] was found only on the bottom layer of the painting, indicating that the wall painting was likely to have been created using the Secco method.

A Hardware Design of Feature Detector for Realtime Processing of SIFT(Scale Invariant Feature Transform) Algorithm in Embedded Systems (임베디드 환경에서 SIFT 알고리즘의 실시간 처리를 위한 특징점 검출기의 하드웨어 구현)

  • Park, Chan-Il;Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.86-95
    • /
    • 2009
  • SIFT is an algorithm to extract vectors at pixels around keypoints, in which the pixel colors are very different from neighbors, such as vertices and edges of an object. The SIFT algorithm is being actively researched for various image processing applications including 3D image reconstructions and intelligent vision system for robots. In this paper, we implement a hardware to sift feature detection algorithm for real time processing in embedded systems. We estimate that the hardware implementation give a performance 25ms of $1,280{\times}960$ image and 5ms of $640{\times}480$ image at 100MHz. And the implemented hardware consumes 45,792 LUTs(85%) with Synplify 8.li synthesis tool.