• 제목/요약/키워드: 얼굴 감지

검색결과 69건 처리시간 0.023초

실시간 영상 기반 신경망을 이용한 마스크 착용 감지 시스템 (Face Mask Detection using Neural Network in Real Time Video Surveillance)

  • 고건혁;최성진;송도훈;박종일
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.208-211
    • /
    • 2021
  • 본 논문에서는 합성곱 신경망을 활용하여 영상에서 마스크 착용 및 미착용 상태를 탐지하는 방법을 제안한다. 코로나바이러스감염증-19(COVID-19)의 유행에 따라 감염 및 확산방지를 위해 마스크 정상적 착용이 요구되는데 몇몇 사람들은 이를 지키지 않고 있으며 현재의 감시 시스템은 입구에서 마스크 착용 여부를 검사하는 방식으로 작동될 뿐 공간에 입장한 다음 착용 여부를 알 수 없다. 제안하는 방법은 합성곱 신경망을 통해 영상에서 얼굴을 탐지하여 얻은 데이터를 이용하여 다수사람들의 마스크 착용 및 미착용 상태를 판별하는 방법으로 설계하였다.

  • PDF

딥러닝의 얼굴 정서 식별 기술 활용-대학생의 심리 건강을 중심으로 (Exploration of deep learning facial motions recognition technology in college students' mental health)

  • 리파;조경덕
    • 한국정보통신학회논문지
    • /
    • 제26권3호
    • /
    • pp.333-340
    • /
    • 2022
  • 코로나19는 모두로 하여금 초조하고 불안하게 만들고, 사람들간에는 거리두기가 필요하다. 코로나19로 인해 심리적으로 초조하고 불안 해 지고 거리두기가 필요해졌다. 대학교에서는 학기 초에 정신건강에 대한 단체 평가와 검사가 이루어진다. 본 연구에서는 다층감지기 신경망 모델을 채택하고 훈련시켜 딥러닝을 진행했다. 훈련이 끝난 후, 실제 사진과 동영상을 입력하고, 안면탐지를 진행하고, 표본에 있는 사람의 얼굴 위치를 알아낸 후, 그 감정을 다시 분류하고, 그 표본의 예측한 감정 결과를 그림으로 보여주었다. 결과는 다음과 같다. 테스트 시험에서는 93.2%의 정확도를 얻었고, 실제 사용에서는 95.57%의 정확도를 얻었다. 그중 분노의 식별율은 95%, 혐오의 식별율은 97%, 행복의 식별율은 96%, 공포의 식별율은 96%, 슬픔의 식별율은 97%, 놀라움의 식별율은 95%, 중립의 식별율은 93%이었다. 본 연구의 고효율적 정서 식별 기술은 학생들의 부정적 정서를 포착하는 객관적 데이터를 제공 할 수 있다. 딥러닝의 감정식별 시스템은 심리건강을 향상하기 위한 데이터들을 제공할 수 있다.

사람의 움직임 감지를 측정한 학습 능률 확인 시스템 (Learning efficiency checking system by measuring human motion detection)

  • 김석현;이진성;유은상;박선우;김응태
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.290-293
    • /
    • 2021
  • 본 논문에서는 공부하는 사용자의 상황을 감지하여, 학습의욕을 고취시키고 집중력 향상을 도와주기 위한 학습능률 확인 시스템을 구현하고자 한다. 이를 위해 실시간 카메라를 통해 사용자의 얼굴이나 몸의 움직임을 추출하여 학습 태도, 집중력에 대한 데이터를 측정한다. 실시간 임베디드 시스템 구현을 위해 Jetson 보드를 사용하였으며, 영상인식을 위한 CNN(Convolution Neural Network)를 구현하였다. CNN 을 이용해 대상의 특징 부분을 검출한 후 움직임 검파를 수행한다. 캡처한 영상을 PYQT5 로 작성된 GUI 에서 영상을 보여주며, 각각 방해되는 행동을 했을 때 푸시메시지를 보내며 데이터를 수집한다. 또한 GUI 로 만든 메인 화면에서 각각의 기능들을 실행 가능하며, 수집한 데이터를 산출해주는 통계그래프와 작업관리 목록, 화이트 노이즈 등의 기능을 수행한다. 구축된 학습능률 확인 시스템을 통해 대상의 데이터를 수집 및 분석을 비롯한 다양한 기능을 사용자에게 제공하였다.

  • PDF

얼굴 특징점 기반의 졸음운전 감지 알고리즘 (Driver Drowsiness Detection Algorithm based on Facial Features)

  • 오미연;정유수;박길흠
    • 한국멀티미디어학회논문지
    • /
    • 제19권11호
    • /
    • pp.1852-1861
    • /
    • 2016
  • Drowsy driving is a significant factor in traffic accidents, so driver drowsiness detection system based on computer vision for convenience and safety has been actively studied. However, it is difficult to accurately detect the driver drowsiness in complex background and environmental change. In this paper, it proposed the driver drowsiness detection algorithm to determine whether the driver is drowsy through the measurement standard of a yawn, eyes drowsy status, and nod based on facial features. The proposed algorithm detect the driver drowsiness in the complex background, and it is robust to changes in the environment. The algorithm can be applied in real time because of the processing speed faster. Throughout the experiment, we confirmed that the algorithm reliably detected driver drowsiness. The processing speed of the proposed algorithm is about 0.084ms. Also, the proposed algorithm can achieve an average detection rate of 98.48% and 97.37% for a yawn, drowsy eyes, and nod in the daytime and nighttime.

가상 모델을 이용한 움직임 추출 알고리즘 (Movement Detection Algorithm Using Virtual Skeleton Model)

  • 주영훈;김세진
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.731-736
    • /
    • 2008
  • 본 논문에서는, 가상 모델을 이용한 움직임 추출 방법을 제안한다. 제안한 방법은 첫 번째, 기존에 제안된 방법으로써 RGB 칼라 모델을 이용하여 전경 영역에 나타나는 에러 값을 제거하고, HSI 칼라 모델을 이용하여 불필요한 정보 값을 제거한다. 두 번째, 사람 10명의 신체 구조비를 이용하여 가상 모델을 생성한다. 그 때, 생성된 가상 모델을 추출된 영역에 매칭시키고, 원 탐색 기법을 이용하여 전경영역의 실제 인간의 머리에 대한 얼굴 실루엣을 추출한다. 세 번째 추출된 정보들을 이용하여 mean-shift 알고리즘에 적용시켜 물체를 추적한다. 마지막으로, 본 논문에서 제안한 알고리즘은 복잡하고 다양한 환경에서 실험을 통해 그 응용 가능성을 증명한다.

내부 운전자 보호를 위한 금속 물체 탐지 시스템 (Metal Object Detection System For Drive Inside Protection)

  • 김진규;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.609-614
    • /
    • 2009
  • 본 논문에서는 내부 운전자에게 위협이 될 수 있는 실시간 금속 물체 탐지 시스템을 제안한다. 제안된 시스템은 퍼지 이론를 이용하여 금속 물체를 탐지할 수 있는 색상 필터를 설계하는 알고리즘과 차량안의 특정 영역 내에서 FSCF(Fuzzy Skin Color Filter)를 이용하여 운전자의 얼굴 영역을 탐지하는 알고리즘을 제안한다. 또한, 탐지된 동승자의 손 영역을 기점으로 색상기반 원형탐색 기법을 사용하여 최종적으로 위협을 가할 수 있는 금속물체의 후보영역을 설정하고, 제안된 금속 물체 필터를 적용하여 최종적인 금속물체영역을 탐지 한다. 마지막으로 제안된 방법은 여러 실험을 통해 내부 운전자 보호를 위한 금속물체 탐지 시스템의 우수성을 증명한다.

트랜스포머 기반 판별 특징 학습 비전을 통한 얼굴 조작 감지 (Facial Manipulation Detection with Transformer-based Discriminative Features Learning Vision)

  • ;김민수;최필주;이석환;;권기룡
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.540-542
    • /
    • 2023
  • Due to the serious issues posed by facial manipulation technologies, many researchers are becoming increasingly interested in the identification of face forgeries. The majority of existing face forgery detection methods leverage powerful data adaptation ability of neural network to derive distinguishing traits. These deep learning-based detection methods frequently treat the detection of fake faces as a binary classification problem and employ softmax loss to track CNN network training. However, acquired traits observed by softmax loss are insufficient for discriminating. To get over these limitations, in this study, we introduce a novel discriminative feature learning based on Vision Transformer architecture. Additionally, a separation-center loss is created to simply compress intra-class variation of original faces while enhancing inter-class differences in the embedding space.

환경변화에 강인한 눈 영역 분리 및 안구 추적에 관한 연구 (Robust Eye Region Discrimination and Eye Tracking to the Environmental Changes)

  • 김병균;이왕헌
    • 한국정보통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.1171-1176
    • /
    • 2014
  • 안구 추적은 눈동자의 움직임을 감지하여 안구의 운동 상태나 시선의 위치를 추적하는 인간과 컴퓨터의 상호작용(HCI)분야이다. 안구 추적은 사용자의 시선 추적을 이용한 마케팅 분석이나 의도 인식 등에 적용되고 있으며 다양한 적용을 위한 많은 연구가 진행되고 있다. 안구 추적을 수행하는 방법 중에 영상처리를 이용한 안구 추적 방법이 사용자에게는 편리하지만 조명의 변화와 스케일 변화 그리고 회전이나 가려짐에는 추적의 어려움이 있다. 본 논문에서는 이미지 기반의 안구 추적시 발생되는 조명, 회전, 스케일 변화 등 환경변화에도 강인하게 안구 추적을 수행하기 위하여 두 단계의 추적 방법을 제안한다. 우선 Haar분류기를 이용하여 얼굴과 안구 영역을 추출하고, 추출된 안구 영역으로부터 CAMShift과 템플릿 매칭을 이용하여 강인하게 안구를 추적하는 두 단계의 안구 추적 방법을 제안하였다. 제안한 알고리즘은 조명 변화, 회전, 스케일 등 변화하는 환경 조건하에서 실험을 통하여 강인성을 증명하였다.

지능적인 홈을 위한 상황인식 미들웨어에 대한 연구 (A Research on a Context-Awareness Middleware for Intelligent Homes)

  • 최종화;최순용;신동규;신동일
    • 정보처리학회논문지A
    • /
    • 제11A권7호
    • /
    • pp.529-536
    • /
    • 2004
  • 무선네트워크와 각종 감지 센서로 통합된 스마트 홈은 우리의 삶의 일부분으로 자리 잡을 것이다. 이 논문은 사용자의 선호도에 근거하여 자동적인 흠 서비스를 제공하는 상황인식 미들웨어에 대하여 설명한다. 상황인식 미들웨어는 사용자의 선호도에 대한 학습과 예측 알고리즘을 수행하기 위하여 6가지의 기본 데이터를 이용하고 제시되는 6가지의 기본 데이터는 맥박, 체온, 얼굴표정, 실내온도, 시간, 사용자 위치이다. 6개의 데이터는 컨텍스트 모델을 구성하고 컨텍스트 매니저 모듈에 의해 기본 데이터로 사용된다. 사용자에 의해서 선택되어진 컨텐츠에 대한 정보를 유지하는 로그매니저가 제시되고 사용자에게 적절한 홈서비스를 제공하기 위해 신경망에 근거한 학습 및 예측 알고리즘을 제시한다. 실험결과는 개인의 선호도 패턴이 연구된 컨텍스트 모델에 의해서 효과적으로 예측되고 평가되는 것을 보여준다.

스마트 디바이스 기반 ECG 감지 IoT 응용 서비스에 관한 연구 (Smart Device based ECG Sensing IoT Applications)

  • 마리아판 비나야감;이승연;이정훈;이주영;차재상
    • 한국위성정보통신학회논문지
    • /
    • 제11권3호
    • /
    • pp.18-23
    • /
    • 2016
  • 의료 센터에서 데이터 분석과 스마트폰 어플리케이션 권한을 부여함으로써 사물 인터넷 (IoT)은 환자 중심의 의료 관찰과 관리에서 대혁변을 일으킬 것이다. 네트워크 연결은 개인 의료 서비스에서 IoT 의학 장치로 부터 건강을 관찰하는 스마트폰으로부터 진료받는 사람들의 건강 정보를 모으기 위한 기본 요구사항이다. 스마트폰에 설치된 IoT 환경은 매우 효과적이고 이것은 사회 기반 시설을 필요로 하지 않는다. 본 논문은 ECG 캡처링에 영향을 주지 않기 위해 스마트폰이 개인 IoT 아키텍처를 효율적으로 사용하는 것을 보여준다. 적응 IoT 의료 장치 관문은 클라우드 구성에 관한 대용량을 가진 개인 의료 서비스에 사용된다. 이 접근법에서, 스마트폰 카메라는 개인 ECG 파형을 추출하기 위해 사용된 이미지 기술을 기반으로 하고, 그것을 IoT 아키텍처를 사용한 대용량 저장 연결에 근거한 클라우드로 보낸다. 정교해진 알고리즘은 스마트폰이나 테블릿 카메라로 부터 찍힌 얼굴이미지로 부터 효율적인 ECG 등록을 직접 가능할 수 있는 여지를 준다. 이 심도있는 기술은 아마 적절한 기능 강화들이 소개된 후에 개인 의료 서비스를 관찰하는데 있어서 특별한 가치를 가질 것이다.