본 논문에서는 합성곱 신경망을 활용하여 영상에서 마스크 착용 및 미착용 상태를 탐지하는 방법을 제안한다. 코로나바이러스감염증-19(COVID-19)의 유행에 따라 감염 및 확산방지를 위해 마스크 정상적 착용이 요구되는데 몇몇 사람들은 이를 지키지 않고 있으며 현재의 감시 시스템은 입구에서 마스크 착용 여부를 검사하는 방식으로 작동될 뿐 공간에 입장한 다음 착용 여부를 알 수 없다. 제안하는 방법은 합성곱 신경망을 통해 영상에서 얼굴을 탐지하여 얻은 데이터를 이용하여 다수사람들의 마스크 착용 및 미착용 상태를 판별하는 방법으로 설계하였다.
코로나19는 모두로 하여금 초조하고 불안하게 만들고, 사람들간에는 거리두기가 필요하다. 코로나19로 인해 심리적으로 초조하고 불안 해 지고 거리두기가 필요해졌다. 대학교에서는 학기 초에 정신건강에 대한 단체 평가와 검사가 이루어진다. 본 연구에서는 다층감지기 신경망 모델을 채택하고 훈련시켜 딥러닝을 진행했다. 훈련이 끝난 후, 실제 사진과 동영상을 입력하고, 안면탐지를 진행하고, 표본에 있는 사람의 얼굴 위치를 알아낸 후, 그 감정을 다시 분류하고, 그 표본의 예측한 감정 결과를 그림으로 보여주었다. 결과는 다음과 같다. 테스트 시험에서는 93.2%의 정확도를 얻었고, 실제 사용에서는 95.57%의 정확도를 얻었다. 그중 분노의 식별율은 95%, 혐오의 식별율은 97%, 행복의 식별율은 96%, 공포의 식별율은 96%, 슬픔의 식별율은 97%, 놀라움의 식별율은 95%, 중립의 식별율은 93%이었다. 본 연구의 고효율적 정서 식별 기술은 학생들의 부정적 정서를 포착하는 객관적 데이터를 제공 할 수 있다. 딥러닝의 감정식별 시스템은 심리건강을 향상하기 위한 데이터들을 제공할 수 있다.
본 논문에서는 공부하는 사용자의 상황을 감지하여, 학습의욕을 고취시키고 집중력 향상을 도와주기 위한 학습능률 확인 시스템을 구현하고자 한다. 이를 위해 실시간 카메라를 통해 사용자의 얼굴이나 몸의 움직임을 추출하여 학습 태도, 집중력에 대한 데이터를 측정한다. 실시간 임베디드 시스템 구현을 위해 Jetson 보드를 사용하였으며, 영상인식을 위한 CNN(Convolution Neural Network)를 구현하였다. CNN 을 이용해 대상의 특징 부분을 검출한 후 움직임 검파를 수행한다. 캡처한 영상을 PYQT5 로 작성된 GUI 에서 영상을 보여주며, 각각 방해되는 행동을 했을 때 푸시메시지를 보내며 데이터를 수집한다. 또한 GUI 로 만든 메인 화면에서 각각의 기능들을 실행 가능하며, 수집한 데이터를 산출해주는 통계그래프와 작업관리 목록, 화이트 노이즈 등의 기능을 수행한다. 구축된 학습능률 확인 시스템을 통해 대상의 데이터를 수집 및 분석을 비롯한 다양한 기능을 사용자에게 제공하였다.
Drowsy driving is a significant factor in traffic accidents, so driver drowsiness detection system based on computer vision for convenience and safety has been actively studied. However, it is difficult to accurately detect the driver drowsiness in complex background and environmental change. In this paper, it proposed the driver drowsiness detection algorithm to determine whether the driver is drowsy through the measurement standard of a yawn, eyes drowsy status, and nod based on facial features. The proposed algorithm detect the driver drowsiness in the complex background, and it is robust to changes in the environment. The algorithm can be applied in real time because of the processing speed faster. Throughout the experiment, we confirmed that the algorithm reliably detected driver drowsiness. The processing speed of the proposed algorithm is about 0.084ms. Also, the proposed algorithm can achieve an average detection rate of 98.48% and 97.37% for a yawn, drowsy eyes, and nod in the daytime and nighttime.
본 논문에서는, 가상 모델을 이용한 움직임 추출 방법을 제안한다. 제안한 방법은 첫 번째, 기존에 제안된 방법으로써 RGB 칼라 모델을 이용하여 전경 영역에 나타나는 에러 값을 제거하고, HSI 칼라 모델을 이용하여 불필요한 정보 값을 제거한다. 두 번째, 사람 10명의 신체 구조비를 이용하여 가상 모델을 생성한다. 그 때, 생성된 가상 모델을 추출된 영역에 매칭시키고, 원 탐색 기법을 이용하여 전경영역의 실제 인간의 머리에 대한 얼굴 실루엣을 추출한다. 세 번째 추출된 정보들을 이용하여 mean-shift 알고리즘에 적용시켜 물체를 추적한다. 마지막으로, 본 논문에서 제안한 알고리즘은 복잡하고 다양한 환경에서 실험을 통해 그 응용 가능성을 증명한다.
본 논문에서는 내부 운전자에게 위협이 될 수 있는 실시간 금속 물체 탐지 시스템을 제안한다. 제안된 시스템은 퍼지 이론를 이용하여 금속 물체를 탐지할 수 있는 색상 필터를 설계하는 알고리즘과 차량안의 특정 영역 내에서 FSCF(Fuzzy Skin Color Filter)를 이용하여 운전자의 얼굴 영역을 탐지하는 알고리즘을 제안한다. 또한, 탐지된 동승자의 손 영역을 기점으로 색상기반 원형탐색 기법을 사용하여 최종적으로 위협을 가할 수 있는 금속물체의 후보영역을 설정하고, 제안된 금속 물체 필터를 적용하여 최종적인 금속물체영역을 탐지 한다. 마지막으로 제안된 방법은 여러 실험을 통해 내부 운전자 보호를 위한 금속물체 탐지 시스템의 우수성을 증명한다.
Due to the serious issues posed by facial manipulation technologies, many researchers are becoming increasingly interested in the identification of face forgeries. The majority of existing face forgery detection methods leverage powerful data adaptation ability of neural network to derive distinguishing traits. These deep learning-based detection methods frequently treat the detection of fake faces as a binary classification problem and employ softmax loss to track CNN network training. However, acquired traits observed by softmax loss are insufficient for discriminating. To get over these limitations, in this study, we introduce a novel discriminative feature learning based on Vision Transformer architecture. Additionally, a separation-center loss is created to simply compress intra-class variation of original faces while enhancing inter-class differences in the embedding space.
안구 추적은 눈동자의 움직임을 감지하여 안구의 운동 상태나 시선의 위치를 추적하는 인간과 컴퓨터의 상호작용(HCI)분야이다. 안구 추적은 사용자의 시선 추적을 이용한 마케팅 분석이나 의도 인식 등에 적용되고 있으며 다양한 적용을 위한 많은 연구가 진행되고 있다. 안구 추적을 수행하는 방법 중에 영상처리를 이용한 안구 추적 방법이 사용자에게는 편리하지만 조명의 변화와 스케일 변화 그리고 회전이나 가려짐에는 추적의 어려움이 있다. 본 논문에서는 이미지 기반의 안구 추적시 발생되는 조명, 회전, 스케일 변화 등 환경변화에도 강인하게 안구 추적을 수행하기 위하여 두 단계의 추적 방법을 제안한다. 우선 Haar분류기를 이용하여 얼굴과 안구 영역을 추출하고, 추출된 안구 영역으로부터 CAMShift과 템플릿 매칭을 이용하여 강인하게 안구를 추적하는 두 단계의 안구 추적 방법을 제안하였다. 제안한 알고리즘은 조명 변화, 회전, 스케일 등 변화하는 환경 조건하에서 실험을 통하여 강인성을 증명하였다.
무선네트워크와 각종 감지 센서로 통합된 스마트 홈은 우리의 삶의 일부분으로 자리 잡을 것이다. 이 논문은 사용자의 선호도에 근거하여 자동적인 흠 서비스를 제공하는 상황인식 미들웨어에 대하여 설명한다. 상황인식 미들웨어는 사용자의 선호도에 대한 학습과 예측 알고리즘을 수행하기 위하여 6가지의 기본 데이터를 이용하고 제시되는 6가지의 기본 데이터는 맥박, 체온, 얼굴표정, 실내온도, 시간, 사용자 위치이다. 6개의 데이터는 컨텍스트 모델을 구성하고 컨텍스트 매니저 모듈에 의해 기본 데이터로 사용된다. 사용자에 의해서 선택되어진 컨텐츠에 대한 정보를 유지하는 로그매니저가 제시되고 사용자에게 적절한 홈서비스를 제공하기 위해 신경망에 근거한 학습 및 예측 알고리즘을 제시한다. 실험결과는 개인의 선호도 패턴이 연구된 컨텍스트 모델에 의해서 효과적으로 예측되고 평가되는 것을 보여준다.
의료 센터에서 데이터 분석과 스마트폰 어플리케이션 권한을 부여함으로써 사물 인터넷 (IoT)은 환자 중심의 의료 관찰과 관리에서 대혁변을 일으킬 것이다. 네트워크 연결은 개인 의료 서비스에서 IoT 의학 장치로 부터 건강을 관찰하는 스마트폰으로부터 진료받는 사람들의 건강 정보를 모으기 위한 기본 요구사항이다. 스마트폰에 설치된 IoT 환경은 매우 효과적이고 이것은 사회 기반 시설을 필요로 하지 않는다. 본 논문은 ECG 캡처링에 영향을 주지 않기 위해 스마트폰이 개인 IoT 아키텍처를 효율적으로 사용하는 것을 보여준다. 적응 IoT 의료 장치 관문은 클라우드 구성에 관한 대용량을 가진 개인 의료 서비스에 사용된다. 이 접근법에서, 스마트폰 카메라는 개인 ECG 파형을 추출하기 위해 사용된 이미지 기술을 기반으로 하고, 그것을 IoT 아키텍처를 사용한 대용량 저장 연결에 근거한 클라우드로 보낸다. 정교해진 알고리즘은 스마트폰이나 테블릿 카메라로 부터 찍힌 얼굴이미지로 부터 효율적인 ECG 등록을 직접 가능할 수 있는 여지를 준다. 이 심도있는 기술은 아마 적절한 기능 강화들이 소개된 후에 개인 의료 서비스를 관찰하는데 있어서 특별한 가치를 가질 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.