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Abstract 

Due to the serious issues posed by facial manipulation technologies, many researchers are becoming 

increasingly interested in the identification of face forgeries. The majority of existing face forgery detection methods 

leverage powerful data adaptation ability of neural network to derive distinguishing traits. These deep learning-based 

detection methods frequently treat the detection of fake faces as a binary classification problem and employ softmax 

loss to track CNN network training. However, acquired traits observed by softmax loss are insufficient for 

discriminating. To get over these limitations, in this study, we introduce a novel discriminative feature learning based 

on Vision Transformer architecture. Additionally, a separation-center loss is created to simply compress intra-class 

variation of original faces while enhancing inter-class differences in the embedding space. 

 

1. Introduction 

With substantial deep learning breakthroughs. Face 

manipulation techniques [1,2] based on Generative 

Adversarial Networks (GAN) [3] enables normal people to 

create high-quality forged faces without the need for 

specialized abilities or knowledge. Over time, a variety of 

solutions have been offered in response to this problem. Early 

research has focused on altering the design of existing neural 

networks or using new properties [4]. The focus of mainstream 

research then gradually shifted to methods that build backbone 

networks using a variety of information and knowledge [5]. 

2. Proposed Method 

Data preprocessing. The first stage in our proposal is data 

preparation. The open dataset FaceForensics++ [6] is used in 

our proposal. The FaceForensics++ contains both authentic 

and manipulated videos. To obtain images, these videos are 

sampled. After that, we use the MTCNN package [7] to crop 

out faces from the sampled images. An attention neural 

network is the first tool our approach uses to generate attention 

features for either genuine or synthetic facial images. An 

overview of data preprocessing is shown in Figure 1. 

 

Fig. 1. Overview of face image preprocessing. 

Separation-center loss. Softmax loss is frequently used in 

deep learning-based face forgery detection methods currently 

in use. The objective of softmax loss is to identify a decision 

boundary that can be utilized to distinguish between multiple 

classes, though. Fundamentally, the learned properties under 

softmax loss supervision are insufficient for discrimination. It 
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is challenging to assemble all the altered faces because 

samples created by various alteration procedures have 

different feature compositions. due to the difficulties of 

optimization, leads to a less-than-ideal solution and even 

worsens performance through overfitting. To address this 

problem, we offer a separability-center loss. Figure 2 displays 

the separability-center loss visualization in embedding space. 
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Where 𝐹𝑟𝑖, 𝐹𝑓𝑖 are the corresponding embedding features of 

real and fake samples. At each iteration, the centers C are 

updated. R and M are number of real and fake points 

 

Fig. 2. The sample feature distribution in embedding space. 

Blue points represent original faces and orange points 

represent manipulated faces. 

 

Fig. 3. Architecture of our proposal. 

 

Our main architecture is displayed in Figure 3. The 

Attention features from data processing is used as input. 

ResNet-50 [8] is used as the main backbone of the 

comvolution vision transformer block [9]. Figure 4 shows the 

detailed components of convolutional vision transformer. The 

center point C of separation-center loss is randomly 

established and modified based on the mini-batches. 

Additionally, we combine softmax loss with separation-center 

loss to direct the center points.The total loss can be calculated 

as follows: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑠𝑜𝑓𝑡𝑚𝑎𝑥 + 𝐿𝑠𝑒𝑝 (2) 

 
Fig. 4. Convolution Vision Transformer. 

3. Experiment 

Implementation detail. we use the FaceForensics++ [6] 

dataset for our evaluation. The FaceForensics++ contains 

1000 original videos that have all been modified utilizing four 

different face modification methods. Three distinct versions of 

the FaceForensics++ dataset are available: c0 (raw), c23 (high 

quality image), and c40 (low quality image), each with a 

different amount of compression. In our experiments, we 

exclusively use low quality images c40 for evaluation. We set 

 to 0.5. 

Evaluation metric. Area under the receiver operating 

characteristic curve (AUC) is utilized as evaluation metric. 

When choosing a classification threshold, a classifier is 

displayed using the receiver operating characteristic (ROC). 

AUC is a region that is under the ROC curve. Additionally, 

accuracy score (ACC) is used to assess categorization models. 

 

Table 1. Comparison results using the FaceForensics++ 

dataset. 

Methods 
c40 

Acc AUC 

Two-Branch [10] - 86.59 

Xception [6] 81.00 - 

MesoNet [4] 70.46 - 

ResNet-50 [8] 85.59 87.62 

Belhassen et .al [11] 66.84 - 

Face-X-ray [12] - 61.6 

Ours 88.11 91.7 
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