• Title/Summary/Keyword: 억제인자

Search Result 1,336, Processing Time 0.025 seconds

The effect of progressive tensional force on mRNA expression of osteoprotegerin and receptor activator of nuclear factor ${\kappa}B$ ligand in the human periodontal ligament cell (기계적 자극이 치주인대 세포의 osteoprotegerin과 receptor activator of nuclear factor ${\kappa}B$ ligand mRNA 발현에 미치는 영향)

  • Lee, Kie-Joo;Lee, Syng-Ill;Hwang, Chung-Ju;Ohk, Seung-Ho;Tian, Yu-Shin
    • The korean journal of orthodontics
    • /
    • v.35 no.4 s.111
    • /
    • pp.262-274
    • /
    • 2005
  • Tooth movement is a result of mutual physiologic responses between the periodontal ligament and alveolar bone stimulated by mechanical strain. The PDL cell and osteoblast are known to have an influence on bone formation by controlling collagen synthesis and alkaline phosphatase activation. Moreover. recent studies have shown that the PDL cell and osteoblast release osteoprotegerin (OPG) and the receptor activator of nuclear factor ぉ ligand (RANKL) to control the level of osteoclast differentiation and activation which in turn influences bone resorption. In this study. progressively increased, continuous tensional force was applied to PDL cells. The objective was to find out which kind of biochemical reactions occur after tensional force application and to illuminate the alveolar bone resorption and apposition mechanism. Continuous and progressively increased tensile force was applied to PDL cells cultured on a petriperm dish with a flexible membrane The amount of $PGE_2$ and ALP synthesis were measured after 1, 3, 0 and 12 hours of force application. Secondly RT-PCR analysis was carried out for OPG and RANKL which control osteoclast differentiation and MMP-1 -8, -9, -13 aud TIMP-1 which regulate the resolution of collagen and resorption of the osteoid layer According to the results. we concluded that progressively increased, concluded force application to human PDL cells reduces $PGE_2$ synthesis, and increases OPG mRNA expression.

Effectiveness of 32-element Surface Coil Array for Accelerated Volume-Targeted Breath-Hold Coronary MRA (체적 지향형 호흡정지 자기공명 조영술의 가속화에 대한 32채널 코일 어레이의 효용성)

  • Lee, Hyun-Yeol;Suh, Jin-Suck;Park, Jae-Seok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.137-145
    • /
    • 2009
  • Purpose : To compare 12 and 32-element surface coil arrays for highly accelerated coronary magnetic resonance angiography (MRA) using parallel imaging. Materials and Methods : Steady state free precession coronary MRA was performed in 5 healthy volunteers at 1.5 T whole body MR scanner using both 12 and 32-element surface coil arrays. Left anterior descending and right coronary artery data sets were acquired for each volunteer. Data sets were sub-sampled for parallel imaging using reduction factors from 1 to 6. Mean geometry factor (g-factor), maximum g-factor, and artifact level were calculated for each of the two coil arrays. Results : Over all reduction factors, the mean and maximum g-factors and artifact level were significantly reduced using the 32-element array compared to the 12element array (P << 0.1). The mean g-factor was sensitive to the imaging orientations of coronary arteries while the maximum g-factor and artifact level were independent of orientation. Conclusion : The 32-element surface coil array significantly improves artifact and noise suppression for highly accelerated coronary MRA using parallel imaging. The increased acceleration factors made feasible with the 32-element array offer the potential to enhance spatial resolution or increase volumetric coverage for 3D coronary MRA.

  • PDF

MicroRNA-126 Regulates the Expression of Stem Cell Transcription Factors (Sox2 and Lin28) in Various Ovarian Tumors (MicroRNA-126은 난소 종양세포의 줄기세포 전사인자 (Sox2와 Lin28) 발현을 조절한다)

  • Park, Ho;Jekal, Seung Joo
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.298-305
    • /
    • 2015
  • Stem cell-like tumor cells are reported to be the main reason for tumor recurrence and metastasis. As one of the new approaches to overcome cancer, studies are emerging to inhibit the expressions of stem cell transcriptional factors (Oct4, Sox2, Klf-4, and Lin28) in cancer cells. MicroRNAs are master genetic regulators that can control development and differentiation of stem cells. In this study using various ovarian tumors (Skov3, Ovcar3, Tov112D, Tov21G, PA-1 and Hsc832(c)T), we examined the expressions of stem cell-related transcription factors, and the biological changes in cell survival and growth by miR-126 that targets stem cell transcriptional factors. We observed that treatment of miR-126 induced the morphological changes and cell suspension in most cells. In addition, miR-126 induced gradual regression of cell division except Skov3 cells, especially significant time-dependent reduction in Tov112D, Tov21G and PA-1. When we examined the expression of stem cell transcriptional factors, Sox2 was shown to be down-regulated after miR-126. Our results demonstrate that miR-126 treatment can provide the reversible environment to regulate cell division and to induce cell death of ovarian tumors, suggesting the molecular biological clues for clinical usage.

Correlation between Infiltrations of Tumor-associated Macrophages, Mast Cells, and Dendritic Cells with Clinicopathologic Factors in Advanced Gastric Cancer (진행성 위암에서 종양 연관성 대식세포, 비만세포, 가지세포의 침윤과 임상-병리학적 인자와의 연관성)

  • Lee, Seung-Bum;Chi, Kyong-Chon
    • Journal of Gastric Cancer
    • /
    • v.5 no.3 s.19
    • /
    • pp.206-212
    • /
    • 2005
  • Purpose: Angiogenesis has a critical role in tumor proliferation, invasion, and metastasis. In gastric cancer, tumor-associated macrophages and mast cells produce angiogenic factors such as VEGF, that inhibit the functional maturation of dendritic cells. The aim of this study is to identify tumor-associated macrophages, mast cells, dendritic cell infiltrations, and microvessel densities (MVD) to investigate the relationship between them and the prognosis for gastric-cancer patients. Materials and Methods: The subjects were 79 patients selected from those who had undergone a curative gastric resection for stomach cancer. With them, Immune-histochemical staining was done using CD34 for the MVD, CD68 antigen for macrophages, and S-100 protein for dendritic cells, and toluidine blue staining was done for mast cells. Results: Macrophage infiltration showed a statistically significant positive correlation with histologic differentiation and a negative correlation with invasion depth, nodal metastasis, and stage. S-100 (+) dendritic cells and mast cells had no significant correlations with histologic differentiation, invasion depth, nodal metastasis, distant metastasis, stage, and MVD. As survival, no statistically significant differences were seen between the variables. Conclusion: Tumor-associated macrophages should be evaluated as possible prognostic markers in gastric-cancer patients.

  • PDF

The Effect of Mineral Trioxide Aggregate on the Production of Growth Factors and Cytokine by Human Periodontal Ligament Fibroblasts (Mineral trioxide aggregate (MTA)가 치주인대 섬유아세포에서 분비되는 cytokine과 성장인자 TGF-β1, FGF-2 발현에 미치는 영향)

  • Kwon, Ji-Yoon;Lim, Sung-Sam;Baek, Seung-Ho;Bae, Kwang-Shik;Kang, Myung-Hoe;Lee, Woo-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.191-197
    • /
    • 2007
  • Mineral trioxide aggregate (MTA) would influence healing of periapical tissues by modulating the production of growth factors and cytokines from PDL fibroblasts, however, the studies are insufficient. Therefore, the purpose of this study was to monitor the expression of transforming growth factor-beta1 $(TGF-\beta1)$, fibroblast growth factor-2 (FGF-2), and interleukin-6 (IL-6) from PDL fibroblasts in the presence of MTA. The human PDL fibroblasts were seeded onto the set MTA or IRM at a level of $1\times10^5$ cells per unit well, and further incubated for 6, 12, 24, and 48 hours. The levels of $TGF-\beta1$, FGF-2 and IL-6 from the supernatant were measured by enzyme-linked immunosorbent assay (ELISA) The data were analyzed using one-way ANOVA. The level of $TGF-\beta1$ was down-reg ulated when the cells were grown in the presence of MTA except at 6 hours. The levels of FGF-2 release were significantly suppressed when PDL fibroblasts were grown in the presence of MTA or IRM at all time intervals (p < 0.05). The expressions of IL-6 from MTA treated co)Is were comparable to those of untreated control cells throughout the observation periods. We presume that this material inhibits the stimulatory function of growth factors on granulation tissue formation and in turn, it promotes the healing process modulated by other bone-remodeling cells.

Recent Strategy for Superior Horses (우수 마 선택을 위한 최신 전략)

  • Gim, Jeong-An;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.855-867
    • /
    • 2016
  • The horse is relatively earlier domesticated animal species. Domesticated horses have been selected for their ability of racing, robustness, and disease-resistance. As a result, the thoroughbred horse genome has been condensed many genotypes related to exercise ability. In recent years, with the advent of NGS technologies, many studies were concentrated on finding superior genetic species in the horse genome in terms of genomics. Consequently, GWAS (Genome-wide Association study) is applied to horse genome, then genetic marker is revealed for superior racing ability. In addition, RNA-Seq is utilized as a method for analyze of whole transcript profiling in specific samples. By using this approach, specific gene expression patterns and transcript sequences can be revealed in various samples such as each individual, before and after exercise state, and each tissue. DNA methylation, a strong factor that regulate gene expression without the change of DNA sequence, have got a lot of attention. In horse genome, exercise- or individual-specific DNA methylation patterns were detected, and could be useful to develop selective marker of superior horses. MicroRNAs inhibit gene expression, and transposable elements accounted for half of the mammalian genome. These two elements are the crucial factors in functional genomics, and could be applied to the selection of superior horses. As the functional genomics and epigenomics advance, then these technologies introduced in this paper were applied to select superior horses. In this paper, the studies for selection of superior horses through genetic technologies, and development possibilities of these studies were discussed.

Relationship between Corrosion in Reinforcement and Influencing Factors Using Half Cell Potential Under Saturated Condition (습윤 상태에서의 반전위를 이용한 철근 부식과 영향 인자 간의 상관성 분석)

  • Jeong, Gi-Chan;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.191-199
    • /
    • 2021
  • In this study, the correlation between the influencing factors on corrosion and Half Cell Potential(HCP) measurement was analyzed considering the three levels of W/C ratio, cover depth, and chloride concentration. The HCP increased with enlarged cover depth, so it was confirmed that the increment of cover depth was effective for control of corrosion. Based on the criteria, the case of 60mm cover depth showed excellent corrosion control with under -200mV, indicating increase of cover depth is an effective method for reducing intrusion of external deterioration factors. When fresh water was injected to the upper part of specimens, very low level of HCP was monitored, but in the case that concentrations of chloride were 3.5% and 7.0%, HCP dropped under -200mV. In addition, the case with high volume of unit binder showed lower HCP measurement like increasing cover depth. Multiple regression analysis was performed to evaluate the correlation between the corrosive influence factors and HCP results, showing high coefficient of determination of 0.97. However, there were limitations such as limited number of samples and measuring period. Through the additional corrosion monitoring and chloride content evaluation after dismantling the specimen, more reasonable prediction can be achieved for correlation analysis with relevant data.

Cell Cycle Arrest by Treatment of D-Ala2-Leu5-enkephalin in Human Leukemia Cancer U937 Cell. (인체혈구암세포 U937의 D-Ala2-Leu5-enkephalin처리에 의한 세포 주기 억제 효과)

  • Lee, Jun-Hyuk;Choi, Woo-Young;Choi, Yung-Hyun;Choi, Byung-Tae
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.620-624
    • /
    • 2009
  • D-Ala2-Leu5-enkephalin (DADLE), a hibernation inducer, can induce hibernation-like state in vivo and in vitro. We treated U937 human leukemia cancer cells with DADLE and investigated its possible effect on transcription and proliferation. Treatment of U937 cells with DADLE resulted in growth inhibition and induction of apoptotic cell death on high-dose as measured by MTT assay and DNA flow cytometer analysis. Bcl-XL, c-IAP-2 and survivin genes especially showed decreases in mRNA levels. DADLE treatment also inhibited the levels of cyclooxygenase (COX)-2 mRNA without alteration of COX-1 expression. DNA flow cytometer analysis revealed that DADLE caused arrest of the cell cycle on low-dose, which was associated with a down-regulation of cyclin E at the transcriptional level. DADLE treatment induced a marked down-regulation of cyclin-dependent kinase (Cdk)-2, -4 and -6. In addition, treatment with DADLE decreased telomere associated genes such as, c-myc and TERT, and increased TEP-1 in U937 cells. These results suggest that DADLE can be an inhibition agent in the cell cycle of the human leukemia cancer U937 cell.

Anti-inflammatory Effect of Achyranthoside E Dimethyl Ester in LPS-stimulated RAW 264.7 Cells (LPS로 인한 RAW 264.7 세포의 염증반응에 미치는 achyranthoside E dimethyl ester의 효과)

  • Bang, Soo Young;Kim, Ji-Hee;Moon, Hyung-In;Kim, Young Hee
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.736-742
    • /
    • 2013
  • Achyranthoside E dimethyl ester (AEDE) is an oleanolic acid glycoside from Achyranthes japonica. In this study, we investigated the effects of AEDE on nitric oxide (NO) production and underlying molecular mechanisms in lipopolysaccharide (LPS)-stimulated macrophages. AEDE inhibited LPS-induced NO secretion as well as inducible NO synthase (iNOS) expression, without affecting cell viability. Further study demonstrated that AEDE induced heme oxygenase-1 (HO-1) gene expression. In addition, the inhibitory effects of AEDE on iNOS expression were abrogated by small interfering RNA-mediated knock-down of HO-1. Moreover, AEDE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. AEDE-induced expression of HO-1 was inhibited by inhibitors of phosphatidylinositol 3-kinase (PI-3K) and extracellular signal regulated kinase (ERK1/2). AEDE phosphorylated Akt and ERK1/2 as well. Therefore, these results suggest that AEDE suppresses the production of pro-inflammatory mediator such as NO by inducing HO-1 expression via PI-3K/Akt/ERK-Nrf2 signaling. These findings provide the scientific rationale for anti-inflammatory therapeutic use of AEDE.

Anti-Inflammatory Effect of Grateloupia imbricata Holmes Ethanol Extract on LPS-Induced RAW 264.7 Cells (꽃지누아리 에탄올 추출물의 LPS로 유도된 RAW 264.7 세포에 대한 항염증 효과)

  • Kim, Min-Ji;Bae, Nan-Yong;Kim, Koth-Bong-Woo-Ri;Park, Ji-Hye;Park, Sun-Hee;Choi, Jung-Su;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.181-187
    • /
    • 2016
  • Algae is a potential resource with various biological activities. In this study, the anti-inflammatory effect of Grateloupia imbricata Holmes ethanol extract (GIHEE) from red algae was investigated in LPS-induced RAW 264.7 cells. As a result, reduced secretion of pro-inflammatory cytokines [tumor necrosis factors-${\alpha}$, interleukin (IL)-$1{\beta}$, and IL-6] and nitric oxide (NO) was observed in a dose-dependent manner. Expression of nuclear factor-kappaB (NF-${\kappa}B$) as well as inducible NO synthase and cyclooxygenase-2 proteins was reduced by GIHEE, suggesting that the anti-inflammatory activity of GIHEE is related to suppression of NF-${\kappa}B$ signaling pathways. In addition, GIHEE reduced phosphorylation of mitogen-activated protein kinases. These results suggest that GIHEE can be used as a potential anti-inflammatory therapeutic.