DOI QR코드

DOI QR Code

The Effect of Mineral Trioxide Aggregate on the Production of Growth Factors and Cytokine by Human Periodontal Ligament Fibroblasts

Mineral trioxide aggregate (MTA)가 치주인대 섬유아세포에서 분비되는 cytokine과 성장인자 TGF-β1, FGF-2 발현에 미치는 영향

  • Kwon, Ji-Yoon (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Lim, Sung-Sam (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Baek, Seung-Ho (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Bae, Kwang-Shik (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Kang, Myung-Hoe (Department of Conservative Dentistry, College of Dentistry, Seoul National University) ;
  • Lee, Woo-Cheol (Department of Conservative Dentistry, College of Dentistry, Seoul National University)
  • 권지윤 (서울대학교 치과대학 치과보존학교실) ;
  • 임성삼 (서울대학교 치과대학 치과보존학교실) ;
  • 백승호 (서울대학교 치과대학 치과보존학교실) ;
  • 배광식 (서울대학교 치과대학 치과보존학교실) ;
  • 강명회 (서울대학교 치과대학 치과보존학교실) ;
  • 이우철 (서울대학교 치과대학 치과보존학교실)
  • Published : 2007.05.31

Abstract

Mineral trioxide aggregate (MTA) would influence healing of periapical tissues by modulating the production of growth factors and cytokines from PDL fibroblasts, however, the studies are insufficient. Therefore, the purpose of this study was to monitor the expression of transforming growth factor-beta1 $(TGF-\beta1)$, fibroblast growth factor-2 (FGF-2), and interleukin-6 (IL-6) from PDL fibroblasts in the presence of MTA. The human PDL fibroblasts were seeded onto the set MTA or IRM at a level of $1\times10^5$ cells per unit well, and further incubated for 6, 12, 24, and 48 hours. The levels of $TGF-\beta1$, FGF-2 and IL-6 from the supernatant were measured by enzyme-linked immunosorbent assay (ELISA) The data were analyzed using one-way ANOVA. The level of $TGF-\beta1$ was down-reg ulated when the cells were grown in the presence of MTA except at 6 hours. The levels of FGF-2 release were significantly suppressed when PDL fibroblasts were grown in the presence of MTA or IRM at all time intervals (p < 0.05). The expressions of IL-6 from MTA treated co)Is were comparable to those of untreated control cells throughout the observation periods. We presume that this material inhibits the stimulatory function of growth factors on granulation tissue formation and in turn, it promotes the healing process modulated by other bone-remodeling cells.

이 연구의 목적은 치주인대 섬유아세포에 MTA를 접촉시킨 뒤 성장인자 transforming growth factor-beta1 $(TGF-\beta1)$, fibroblast growth factor-2 (FGF-2) 및 cytokine interleukin-6 (IL-6)의 발현량 변화를 측정하는 것이다. MTA군에서는 100 mg씩의 ProRoot MTA와 증류수를 혼합하고, IRM군은 동량의 IRM 분말을 용액에 혼합하여 이 시료들을 경화반응이 진행되도록 7일간 놓아두었다. 사람의 치주인대 섬유아세포를 배양하여 MTA와 IRM시료 상에 well당 $1\times10^5$개 수준으로 도포한뒤 6, 12, 24, 48시간 동안 배양하였다 (n = 5). 대조군으로는 재료의 접촉 없이 배양한 세포를 사용하였다. 시료에서 상층액을 분리하여 $TGF-\beta1$, FGF-2, IL-6의 발현량을 enzyme-linked immunosorbent assay (ELISA)법으로 측정하였다. MTA군에서, 성장인자인 $TGF-\beta1$과 FCF-2는 대조군에 비해 유의성 있게 발현이 억제되었으며 (p < 0.05), cytokine인 IL-6 발현량은 대조군과 유사한 수준으로 나타났다.

Keywords

References

  1. Gutmann JL, Harrison JW, Surgical endodontics. St. Louis, MO: IEA Inc., 1994
  2. Dorn SO, Gartner AH, Retrograde filling materials: a retrospective success-failure study of amalgam, EBA. and IRM. J Endod 16:391-393, 1990 https://doi.org/10.1016/S0099-2399(06)81912-6
  3. Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod 19:591-595, 1993 https://doi.org/10.1016/S0099-2399(06)80271-2
  4. Tang HM, Torabinejad M, Kettering JD. Leakage evaluation of root end filling materials using endotoxin. J Endod 28:5-7, 2002 https://doi.org/10.1097/00004770-200201000-00002
  5. Torabinejad M, Pitt Ford TR, McKendry DJ, Abedi HR, Miller DA, Kariyawasam SP. Histologic assessment of mineral trioxide aggregate as a root-end filling in monkeys. J Endod 23:225-8, 1997 https://doi.org/10.1016/S0099-2399(97)80051-9
  6. Torabinejad M, Ford TR, Abedi HR. Kariyawasam SP, Tang HM, Tissue reaction to implanted root-end filling materials in the tibia and mandible of guinea pigs. J Endod 24:468-71, 1998 https://doi.org/10.1016/S0099-2399(98)80048-4
  7. Economides N, Pantelidou O, Kokkas A, Tziafas D. Short-term periradicular tissue response to mineral trioxide aggregate (MTA) as root-end filling material. Int Endod J 36:44-8. 2003 https://doi.org/10.1046/j.0143-2885.2003.00611.x
  8. Koh ET, McDonald F, Pitt Ford TR. Torabinejad M. Cellular response to Mineral Trioxide Aggregate. J Endod 24:543-7, 1998 https://doi.org/10.1016/S0099-2399(98)80074-5
  9. Mitchell PJ, Pitt Ford TR. Torabinejad M, McDonald F. Osteoblast biocompatibility of mineral trioxide aggregate. Biomaterials 20: 167-73, 1999 https://doi.org/10.1016/S0142-9612(98)00157-4
  10. Balto HA. Attachment and morphological behavior of human periodontal ligament fibroblasts to mineral trioxide aggregate: a scanning electron microscope study. J Endod 30:25-9. 2004 https://doi.org/10.1097/00004770-200401000-00005
  11. Thomson TS, Berry JE. Somerman MJ. Kirkwood KL. Cementoblasts maintain expression of osteocalcin in the presence of mineral trioxide aggregate. J Endod 29:407-12, 2003 https://doi.org/10.1097/00004770-200306000-00007
  12. No authors listed. The potential role of growth and differentiation factors in periodontal regeneration, J Periodontol 67: 545-53. 1996
  13. Oringer RJ. Biological mediators for periodontal and bone regeneration. Compend Con tin Educ Dent 23: 501-4.506-10,512 passim: quiz 518. 2002
  14. Centrella M. McCarthy TL, Canalis E. Transforming growth factor beta is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone. J BioI Chem 262: 2869-74, 1987
  15. Okada H. Murakami S. Cytokine expression in periodontal health and disease. Crit Rev Oral BioI Med 9:248-66, 1998 https://doi.org/10.1177/10454411980090030101
  16. Lyngstadaas SP, Lundberg E. Ekdahl H. Andersson C. Gestrelius S. Autocrine growth factors in human periodontal ligament cells cultured on enamel matrix derivative. J Clin Periodontol 28: 181-8. 2001 https://doi.org/10.1034/j.1600-051x.2001.028002181.x
  17. Koh ET, Torabinejad M, Pitt Ford TR. Brady K. McDonald F. Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J Biomed Mater Res 37:432-9. 1997 https://doi.org/10.1002/(SICI)1097-4636(19971205)37:3<432::AID-JBM14>3.0.CO;2-D
  18. Boyko GA. Melcher AH. Brunette DM. Formation of new periodontal ligament by periodontal ligament cells implanted in vivo after culture in vitro, A preliminary study of transplanted roots in the dog. J Periontal Res 16:73-88. 1981 https://doi.org/10.1111/j.1600-0765.1981.tb00951.x
  19. Melcher AH. On the repair potential of periodontal tissue. J Periodontol 62:458-467. 1974 https://doi.org/10.1902/jop.1991.62.7.458
  20. McCulloch CAG. Bardin S. Role of fibroblast subpopulations in periodontal physiology and pathology. J Periodont Res 26:144-154, 1991 https://doi.org/10.1111/j.1600-0765.1991.tb01638.x
  21. Corcoran JF. Sieraski SM. Ellison RL, Osseous healing kinetics after picoectomy in monkeys. II. A quantitative histologic appraisal. J Endod 11:269-74, 1985 https://doi.org/10.1016/S0099-2399(85)80184-9
  22. Harrison JW. Jurosky KA, Wound healing in the tissues of the periodontium following periradicular surgery. III. The osseous excisional wound. J Endod 18:76-81. 1992 https://doi.org/10.1016/S0099-2399(06)81375-0
  23. Regan JD, Gutmann JL, Witherspoon DE. Comparison of Diaket and MTA when used as root-end filling materials to support regeneration of the periradicular tissues. Int Endod J 35:840-7, 2002 https://doi.org/10.1046/j.1365-2591.2002.00582.x
  24. Keiser K. Johnson CC, DA Tipton. Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblast. J Endod 26:288-91. 2000 https://doi.org/10.1097/00004770-200005000-00010
  25. Graves DT, Cochran DL. Periodontal regeneration with polypeptide growth factors. Curr Opin Periodontol 1: 178-86, 1994
  26. Kissin EY, Lemaire R, Korn JH, Lafyatis R. Transforming growth factor beta induces fibroblast fibrillin-1 matrix formation. Arthritis Rheum 46:3000-9, 2002 https://doi.org/10.1002/art.10621
  27. Piche JE, Graves DT. Study of the growth factor requirements of human bone-derived cells: a comparison with human fibroblasts. Bone 10:131-8, 1989 https://doi.org/10.1016/8756-3282(89)90011-2
  28. Chenu C, Pfeilschifter J, Mundy GR, Roodman GD. Transforming growth factor beta inhibits formation of osteoclast-like cells in long-term human marrow cultures. Proc Natl Acad Sci 85:5683-7, 1988
  29. Okuda K. Kawase T, Momose M, Murata M, Saito Y, Suzuki H, Wolff LF, Yoshie H. Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the proliferation of periodontally related cells in vitro. J Periodontol 74:849-57, 2003 https://doi.org/10.1902/jop.2003.74.6.849
  30. Takayama S, Murakami S, Miki Y, Ikezawa K. Tasaka S, Terashima A. Asano T, Okada H. Effects of basic fibroblast growth factor on human periodontal ligament cells. J Periodontal Res 32:667-75, 1997 https://doi.org/10.1111/j.1600-0765.1997.tb00577.x
  31. Ishimi Y, Miyaura C, Jin CH. et al. lL-6 is produced by osteoblasts and induces bone resorption. J Immunol 145:3297-303, 1990
  32. Haglund R, He J, Jarvis J, Safavi KE, Spangberg LSW, Zhu Q. Effects of root-end filling materials on fibroblasts and macrophages in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 95:739-45, 2003 https://doi.org/10.1067/moe.2003.231
  33. Koh ET, McDonald F, Pitt Ford TR, Torabinejad M. Cellular response to mineral trioxide aggregate. J Endod 24:543-7, 1998 https://doi.org/10.1016/S0099-2399(98)80074-5

Cited by

  1. Effects of condensation techniques and canal sizes on the microleakage of orthograde MTA apical plug in simulated canals vol.34, pp.3, 2009, https://doi.org/10.5395/JKACD.2009.34.3.208
  2. The effect of several root-end filling materials on MG63 osteoblast-like cells vol.35, pp.3, 2010, https://doi.org/10.5395/JKACD.2010.35.3.222
  3. Biocompatibility of experimental mixture of mineral trioxide aggregate and glass ionomer cement vol.35, pp.5, 2010, https://doi.org/10.5395/JKACD.2010.35.5.359
  4. Biocompatibility of bioaggregate cement on human pulp and periodontal ligament (PDL) derived cells vol.35, pp.6, 2010, https://doi.org/10.5395/JKACD.2010.35.6.473