• Title/Summary/Keyword: 억제인자

Search Result 1,336, Processing Time 0.043 seconds

Regulatory Effect of Inflammatory Cytokines Secretion and Hypoxia-inducible $Factor-1{\alpha}$ Activation by Panax ginseng (인삼의 염증성 사이토카인 분비 및 저산소 유도인자-1${\alpha}$ 활성화 조절 효과)

  • Zo, Chul-Won;Lee, Seung-Hee;Kim, Dong-Woung;Lee, Seong-Kyun;Song, Bong-Keun
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.864-878
    • /
    • 2006
  • Purpose : Panax ginseng(PG) is considered to have salutary effects and stimulant actions on physical capacity. However, the effects of PG on the inflammatory cytokine secretion and hypoxia condition are still not understood. This study wasto elucidate the effect of PG on inflammatory cytokine secretion such as interleukin (IL)-1, IL-6, granulocyte macrophage colony stimulating factor (GM-CSF), and tumor necrosis factor $(TNF)-{\alpha}$. Also, the effects on the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1 (HIF-1) were measured. Methods : The water extract of PG was administrated to HMC-1 cells before phorbol myristate acetate (PMA)+A23187 treatment. $IL-1{\beta}$, IL-6, $TNF-{\alpha}$, GM-CSF, and VEGF secretion were measured by a modified enzyme-linked immunosorbent assay (ELISA). HIF-1 activation was measured by transcription factor enzyme-linked immunoassay (TF-EIA) Results : PG significantly decreased secretion of $IL-1{\beta}$, IL-6, $TNF-{\alpha}$, and GM-CSF in PMA+A23187-induced HMC-1 cells. VEGF secretion was not changed but HIF-1 activation was decreased by the treatment of PG. Conclusions : PG inhibited the secretion of inflammatory cytokines, which impliesPG might contribute to treatment of mast cell-mediated inflammatory disease. Also, PG inhibited PMA+A23187-induced $HIF -1{\alpha}activation}$ and DNA-binding activity for HIF-1. Therefore, these data demonstrate that PG modulates inflammatory cytokines through inhibition of $HIF-1{\alpha}activation}$ activation.

  • PDF

Inhibition of Cancer Cell Migration by Compounds from Garlic Extracts (마늘추출물에 의한 암세포의 이동 저하)

  • Kim, Eun-Kyoung;Yun, Sung-Ji;Ha, Jung-Min;Jin, In-Hye;Kim, Young-Whan;Kim, Sun-Gun;Park, Da-Jung;Choi, Young-Whan;Yun, Sik;Kim, Chi-Dae;Bae, Sun-Sik
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.767-774
    • /
    • 2011
  • Cell migration plays a fundamental role in cancer cell invasion and metastasis as well as in many physiological responses. Here, we screened four different sources of garlic - water extract of normal and black garlic, as well as dried normal and black garlic - for the identification of anti-invasive and anti-metastatic activity on cancer cells. Inhibition of cancer cell migration was observed in the hexane extract of dried-garlic. Inhibitory activity was further purified to near homogeneity by thin layer chromatography and named $\b{i}$nhibitor of $\b{c}$ancer $\b{m}$etastasis from garlic #27 (ICMG-27). ICMG-27 completely blocked insulin-like growth factor-1 (IGF-1)-induced OVCAR-3 cell migration at 6 ${\mu}g/ml$. ICMG-27 completely blocked IGF-1-induced OVCAR-3 and NIH-3T3 cell migration whereas IGF-1-induced mouse embryonic fibroblast (MEF) cell migration was not affected byICMG-27. ICMG-27 inhibited all the tested IGF-1-induced cancer cell migration such as OVCAR-3, SKOV-3, and MDA-MB-231 cells. Finally, ICMG-27 could inhibit IGF-1-, lysophosphatidic acid (LPA)-, sphingosine-1-phosphate (S1P)-, leukotriene B4 (LTB4)-, and angiotensin II (AngII)-induced OVCAR-3 cell migration. These results indicate that ICMG-27 inhibits cancer cell migration by blocking essential steps in many agonists-induced cancer cell migrations. Unveiling an anti-invasive mechanism of ICMG-27 on cancer cells will provide a basis for cancer therapy.

Antiinflammatory Activity of Solvent-partitioned Fractions from Atriplex gmelinii C. A. Mey. in LPS-stimulated RAW264.7 Macrophages (염생식물 가는갯는쟁이 용매 추출물의 항염증활성)

  • Jeong, Heejeong;Kim, Hojun;Ju, Eunsin;Lee, Seul-Gi;Kong, Chang-Suk;Seo, Youngwan
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.187-193
    • /
    • 2017
  • As a part of ongoing research to elucidate and characterize antiinflammatory nutraceuticals, the crude extracts from Atriplex gmelinii C. A. Mey. and their solvent-partitioned fractions were tested for their antiinflammatory potential in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophages. The crude extracts of A. gmelinii C. A. Mey. were fractioned according to polarity with n-hexane, 85% aqueous methanol (85% aq. MeOH), n-butanol, and $H_2O$. Their antiinflammatory activities were investigated in LPS-induced inflammation in mouse macrophages by measuring nitric oxide (NO) generation and mRNA expression of inflammation mediators, namely, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-$1{\beta}$ ($IL-1{\beta}$), and IL-6. As a result, we confirmed that the crude extracts of A. gmelinii C. A. Mey. inhibited LPS-stimulated NO production and mRNA expression of iNOS and COX-2 as important inflammatory factors. The inhibition of NO production through the downregulation of important inflammatory factors such as iNOS, COX-2, $IL-1{\beta}$, and IL-6 was found by treatment with all solvent-partitioned fractions. Among all tested fractions, 85% aq. MeOH showed the strongest antiinflammatory response. Based on the current results, A. gmelinii C. A. Mey. was suggested to possess natural antiinflammatory components, indicating that it could be used as a valuable source of antiinflammatory substances.

Decreased Neutrophil Apoptosis in Patients with Sepsis is Related to the Activation of NF-κB (패혈증 환자에서 NF-κB 활성화에 의한 호중구 아포프토시스의 억제)

  • Kwon, Sung Youn;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.5
    • /
    • pp.495-509
    • /
    • 2003
  • Background : Neutrophil-mediated inflammation is usually self-limiting, because neutrophils have a remarkably short life span. Prolonged neutrophil survival, which is caused by decreased spontaneous apoptosis, leads to persistent inflammation in sepsis. Because many inflammatory cytokines, which generate signals that delay apoptosis, are regulated by nuclear factor-${\kappa}B$ transcription factor, we hypothesized that nuclear factor-${\kappa}B$ might be related to the reduced neutrophil apoptosis observed in sepsis. Methods : Neutrophils of healthy volunteers and sepsis patients were freshly isolated from venous blood. Neutrophil apoptosis was assayed with two approaches : by counting apoptotic cells under a microscope and by flow cytometry using Annexin V. The activity of nuclear factor-${\kappa}B$ was assessed by immunofluorescent staining or electrophoretic mobility shift assay. Expression of X-linked inhibitor of apoptosis was measured by western blot assay. Results : We confirmed reduced spontaneous neutrophil apoptosis in patients with sepsis. The number of apoptotic neutrophils in patients with sepsis increased to the level of that in healthy controls after cycloheximide treatment, suggesting that decreased spontaneous neutrophil apoptosis is dependent on de novo protein synthesis. In patients with sepsis, basal neutrophil nuclear factor-${\kappa}B$ was activated compared to the level in healthy controls. Moreover, a blockade of nuclear factor-${\kappa}B$ activity reversed the decreased spontaneous neutrophil apoptosis in sepsis patients. Meanwhile, X-linked inhibition of apoptosis expression, which is regulated by nuclear factor-${\kappa}B$, decreased 24 hours after incubation in healthy persons, but persisted for 24 hours in patients with sepsis. Conclusion : These observations suggest that the reduced spontaneous neutrophil apoptosis observed in patients with sepsis may be related to the induction of survival protein by nuclear factor-${\kappa}B$.

Effect of the Flavonoid Luteolin for Dextran Sodium Sulfate-induced Colitis in NF-${\kappa}B^{EGFP}$ Transgenic Mice (Dextran Sodium Sulfate 유발 장염 모델에서 루테올린의 치료효과)

  • Jang, Byung-Ik
    • Journal of Yeungnam Medical Science
    • /
    • v.23 no.1
    • /
    • pp.26-35
    • /
    • 2006
  • Background: Luteolin, a flavone found in various Chinese herbal medicines is known to possess anti-inflammatory properties through its ability to inhibit various proinflammatory signaling pathways including NF-${\kappa}B$ and p38 MAPK. In this study, we investigated the potential therapeutic effect of luteolin on dextran sodium sulfate (DSS)-induced colitis. Materials and Methods: We used a transgenic mouse model expressing the enhanced green fluorescent protein (EGFP) under the transcriptional control of NF-${\kappa}B$ $cis$-elements. C57BL/6 NF-${\kappa}B^{EGFP}$ mice received 2.5% DSS in their drinking water for six days in combination with daily luteolin administration (1mg/kg body weight, 0.1ml vol, intragastric) or vehicle. NF-${\kappa}B$ activity was assessed macroscopically with a Charge-Coupled Device (CCD) camera and microscopically by confocal analysis. Results: A significant increase in the Disease Activity Index (DAI), histological score (p<0.05), IL-12 p40 secretion in colonic stripe culture (p<0.05) and EGFP expression was observed in luteolin and/or DSS-treated mice compared to water-treated mice. Interestingly, a trend toward a worse colitis (DAI, IL-12p40) was observed in luteolin-treated mice compared to non-treated DSS-exposed mice. In addition, EGFP expression (NF-${\kappa}B$ activity) strongly increased in the luteolin-treated mice compared to control mice. Confocal microscopy showed that EGFP positive cells were primarily lamina propria immune cells. Conclusions: These results suggest that luteolin is not a therapeutic alternative for intestinal inflammatory disorders derived for primary defects in barrier function. Thus, therapeutic intervention targeting these signaling pathways should be viewed with caution.

  • PDF

Inhibition of Neointima Formation and Migration of Vascular Smooth Muscle Cells by Anti-vascular Endothelial Growth Factor Receptor-1 (Flt-4) Peptide in Diabetic Rats (당뇨병 쥐에서 혈관내피 성장인자 수용체-1 차단 펩타이드를 이용한 신내막 형성과 혈관평활근세포 이동의 억제)

  • Jo, Min-Seop;Yoo, Ki-Dong;Park, Chan-Beom;Cho, Deog-Gon;Cho, Kue-Do;Jin, Ung;Moon, Kun-Woong;Kim, Chul-Min;Wang, Young-Pil;Lee, Sun-Hee
    • Journal of Chest Surgery
    • /
    • v.40 no.4 s.273
    • /
    • pp.264-272
    • /
    • 2007
  • Background: Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis, including stimulating the proliferation and migration of vascular smooth muscle cells (VSMCs). It has been known that diabetes is associated with accelerated cellular proliferation via VEGF, as compared to that under a normal glucose concentration. We investigated the effects of selective blockade of a VEGF receptor by using anti-Flt-1 peptide on the formation and hyperplasia of the neointima in balloon injured-carotid arteries of OLETF rats and also on the in vitro VSMCS' migration under high glucose conditions. Material and Method: The balloon-injury method was employed to induce neointima formation by VEGF. For f4 days beginning 2 days before the ballon injury, placebo or vascular endothelial growth factor receptor-1 (VEGFR-1) specific peptide (anti-Flt-1 peptide), was injected at a dose of 0.5mg/kg daily into the OLETF rats. At 14 days after balloon injury, the neointimal proliferation and vascular luminal stenosis were measured, and cellular proliferation was assessed by counting the proliferative cell nuclear antigen (PCNA) stained cells. To analyze the effect of VEGF and anti-Flt-1 peptide on the migration of VSMCs under a high glucose condition, transwell assay with a matrigel filter was performed. And finally, to determine the underlying mechanism of the effect of anti-Flt-1 peptide on the VEGF-induced VSMC migration in vitro, the expression of matrix metalloproteinase (MMP) was observed by performing reverse transcription-polymerase chain reaction (RT-PCR). Result: Both the neointimal area and luminal stenosis associated with neointimal proliferation were significantly decreased in the anti-Flt-1 peptide injected rats, ($0.15{\pm}0.04 mm^2$ and $ 36.03{\pm}3.78%$ compared to $0.24{\pm}0.03mm^2\;and\;61.85{\pm}5.11%$, respectively, in the placebo-injected rats (p<0.01, respectively). The ratio of PCNA(+) cells to the entire neointimal cells was also significantly decreased from $52.82{\pm}4.20%\;to\;38.11{\pm}6.89%$, by the injected anti-Flt-1 peptide (p<0.05). On the VSMC migration assay, anti-Flt-1 peptide significantly reduced the VEGF-induced VMSC migration by about 40% (p<0.01). Consistent with the effect of anti-Flt-1 peptide on VSMC migration, it also obviously attenuated the induction of the MMP-3 and MMP-9 mRNA expressions via VEGF in the VSMCS. Conclusion: Anti-Flt-1 peptide inhibits the formation and hyperplasia of the neointima in a balloon-injured carotid artery model of OLETF rats. Anti-Flt-1 peptide also inhibits the VSMCs' migration and the expressions of MMP-3 and MMP-9 mRNA induced by VEGF under a high glucose condition. Therefore, these results suggest that specific blockade of VEGFR-1 by anti-Flt-1 peptide may have therapeutic potential against the arterial stenosis of diabetes mellitus patients or that occurring under a high glucose condition.

Role of the Nuclear Transcription Factor NF-κB Caused by Acute Hypoxia in the Heart (급성 저산소증 상태에서 심장 내 전사인자 NF-κB의 기능)

  • Joo, Chan Uhng;Juhng, Woo Suk;Kim, Jae Cheol;Yi, Ho Keun
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.9
    • /
    • pp.1106-1113
    • /
    • 2002
  • Purpose : Nuclear ($factor-{\kappa}BNF-{\kappa}B$) is now recognized as playing a potential role in programmed cell death and the adaptive response to various stress. Cellular hypoxia is a primary manifestation of many cardiovascular diseases. It seems that vascular endothelial growth factor (VEGF) and insulin like growth factor-I(IGF-I) have a function as a protective molecule in the heart against several stress including hypoxia. In this study, the role of $NF-{\kappa}B$ to the cellular response and regulation of protective molecules against the acute hypoxia in the heart was studied. Methods : To cause acute hypoxic stress to the heart, Sprague Dawley rats were exposed to hypoxic chamer($N_2$ 92% and $O_2$ 8%). After the hypoxic exposure, nuclear proteins, total proteins and mRNA were isolated from heart. Translocation of the transcription factors $NF-{\kappa}B$, NF-ATc, AP-1 and NKX-2.5 were evaluated by electrophoretic mobility shift assay(EMSA). The expression of IGF-I and VEGF were studied before and after the hypoxic stress by competitive-PCR, Northern hybridization and Western hybridization. To confirm the role of the $NF-{\kappa}B$ in the heart, the rats also were pretreated with diethyl-dithiocarbamic acid(DDTC) into peritoneal cavity to block $NF-{\kappa}B$ translocation into nucleus. Results : The expression of $NF-{\kappa}B$, AP-1 and NF-ATc were increased by the hypoxic stress. Increased expression of the VEGF and IGF-I were also observed by the hypoxic stress. However, the blocking of the $NF-{\kappa}B$ translocation reduced those expressions of VEGF and IGF-I. Conclusion : These results suggest that $NF-{\kappa}B$ has a protective role against the acute hypoxia through several gene expression, especially VEGF and IGF-I in heart muscle.

AMP-activated Kinase Regulates Adipocyte Differentiation Process in 3T3-L1 Adipocytes Treated with Selenium (AMP-activated protein kinase가 셀레늄으로 처리된 3T3-L1 지방세포의 분화과정 억제에 관한 연구)

  • Park, Song-Yi;Hwang, Jin-Taek;Lee, Yun-Kyoung;Kim, Young-Min;Park, Ock-Jin
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.423-428
    • /
    • 2009
  • Selenium was investigated using human origin preadipocytes to see whether it possesses preventive or therapeutic effects for obesity. Unveiling the potential of selenium in the reduction of adipogenesis can help predict the therapeutic capabilities of selenium in obesity. In the present study, the molecular mechanism of the inhibition of adipogenesis by selenium was explored to unravel the involvement of the AMP-activated protein kinase. There is emerging evidence that AMPK, a sensor of cellular energy status, is a possible molecular target of controlling adipocyte differentiation on the basis of discovery that AMPK is responsible for the major metabolic responses to exercise, and integration of nutritional and hormonal signals to modulate feeding behavior or energy expenditure in the hypothalamus. Treatment of selenium resulted in inhibition of the adipocyte differentiation process and induction of mature apoptosis in 3T3-L1 adipocytes. We hypothesized that selenium may exert anti-adipogenic potential though modulating AMPK. We have found that selenium significantly activated AMPK and phosphorylated its substrate acetyl-CoA carboxylase ($ACC-serine^{79}$) during the inhibitory process of adipocytes. Also, the inhibition process of adipocyte differentiation by selenium was comparable to either reveratrol or a synthetic AMPK activator, AICAR (5-aminoimidazole-4-carboxamide-1-${\beta}$-D-ribofuranoside). To evaluate the involvement of AMPK in anti-lipogensis, we applied AICAR and Compound C, an AMPK inhibitor, to 3T3-L1-adipocytes and found that AMPK is required for the adipocyte differentiation blocking process. These results suggest that selenium has a potential to control adipogenesis and that this effect is mediated by AMPK, an essential kinase for both inhibition of adipocyte differentiation and apoptosis of mature adipocytes.

Anti-inflammatory Effect of Ethanol Extract from Sargassum fulvellum on Lipopolysaccharide Induced Inflammatory Responses in RAW 264.7 Cells and Mice Ears (LPS로 유도된 RAW 264.7 세포와 마우스 귀조직에 대한 참모자반 (Sargassum fulvellum) 에탄올 추출물의 항염증 효과)

  • Jeong, Da-Hyun;Kim, Koth-Bong-Woo-Ri;Kim, Min-Ji;Kang, Bo-Kyeong;Bark, Si-Woo;Pak, Won-Min;Kim, Bo-Ram;Ahn, Na-Kyung;Choi, Yeon-Uk;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1158-1165
    • /
    • 2014
  • This study investigated the anti-inflammatory effects of Sargassum fulvellum ethanol extract (SFEE) on the lipopolysaccharide (LPS)-induced inflammatory response. SFEE remarkably suppressed production of NO and pro-inflammatory cytokines (IL-6, $TNF-{\alpha}$, and $IL-1{\beta}$ at 50 and $100{\mu}g/mL$. There were no cytotoxic effects on proliferation of macrophages treated with SFEE compared to the control. SFEE reduced expression of iNOS and COX-2 proteins in a dose-dependent manner. The formation of edema in mouse ears was reduced at the highest dose tested compared to the control. Moreover, in the acute toxicity test, no mortality occurred in mice administered 5,000 mg/kg body weight of SFEE over the 2-week observation period. These results suggest that SFEE may have significant effects on inflammatory factors and be a potential anti-inflammatory therapeutic material.

Anti-periodontitic Effects of Weissella cibaria SPM402 and Lactobacillus paracasei SPM412 Isolated from Korean Traditional Foods (한국전통식품에서 분리한 Weissella cibaria SPM402와 Lactobacillus SPM412의 항치주염 효능)

  • So Won Kang;Chae Hyeon Seo;Sungsook Choi
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.4
    • /
    • pp.343-352
    • /
    • 2024
  • This study aimed to develop probiotics with anti-periodontitic effects to help treat inflammation in the tissues surrounding the teeth. We isolated Weisiella cibaria (W. cibareia) SPM402 and Lactobacillus paracasei (L. paracasei) SPM412 from homemade kimchi and used their cell-free supernatants. At a concentration of 10 mg/mL of L. paracasei SPM412 (LP412) inhibited the formation of Fusobacterium nucleatum (F. nucleatum) biofilm by 95.99±0.73%. In addition, 10 mg/mL of LP412 reduced the RQ value of fimA, an adhesin gene of Porphyromonas gingivalis (P. gingivalis) to 0.08±0.05, and the RQ value of radD, an adhesin gene of F. nucleatum, to 0.08±0.008. When the P. gingivalis outer membrane vehicle (Pg OMV) induced inflammation in YD-38 cells, the RQ value of TNF-α was increased to 36.68±1.85, but was reduced to 4.15±0.37 in the presence of 1 mg/mL of W. cibareia SPM402 (WC402). Similarly, in Pg OMV-induced inflammation in THP-1 cells, the RQ value of IL-1β increased to 2,330.65±204.61 but was reduced to 15.19±4.57 in the presence of 15 mg/mL of WC402. In F. nucleatum-induced inflammation in YD-38 cells, the RQ value of IL-8 increased to 15.10±1.11 and was decreased to 2.67±0.50 in the presence of 1 mg/mL of LP412. In conclusion, W. cibaria SPM402 and L. paracasei SPM412 showed potent anti-inflammatory effects against oral pathogenic bacteria and hold promise as functional probiotics with anti-periodontitic activity.