• Title/Summary/Keyword: 어항

Search Result 1,628, Processing Time 0.023 seconds

A Basic Study on Proper Straight Route Distance under Marine Bridge using ES Model (ES모델을 이용한 해상교량 하부 적정 직선항로 길이에 대한 기초 연구)

  • Park, Young-Soo;Choi, Kwang-young;Park, Sang-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.133-139
    • /
    • 2018
  • Keeping a proper straight route length under the marine bridge is one of the important factors for the safe passage of ships. However, according to port and harbor design standards, there is only a constant guideline of 8 times the length of the marine bridge underpass. On this study, we used the ES model to determine the ratio of risk to the route width, traffic volume, the degree of curvature of the route, and the length of the straight route in order to derive the optimal straight route distance. As a result, the risk ratio decreased by 2.27% as the route distance increased from 3L to 10L when the degree of curvature of the route was $45^{\circ}$. The risk associated with curvature was found to be 4.83% when the bending degree was changed from $0^{\circ}$ to $45^{\circ}$ in the case of 3L length. In addition, it was confirmed that the risk ratio according to the degree of curvature of the route and the straight route was reduced by 1.45% at maximum under the condition that the width of the line was 400m and the number of the vessels generated per hour was 20. It was verified that a straight route distance more than a certain length is needed depending on the congestion degree and the degree of curvature of the route when constructing the marine bridge.

The Present State of Occupational Injuries and Prevention on East Side of Korea Fishing (동해안 연근해 어업의 산재현황과 예방대책)

  • Song, Jae-Seok;Choi, Hong-Soon;Seo, Jong-Chul;Kwak, Youn-Hee;Park, Woong-Sub;Kim, Sang-Ah;Yoon, Yi-Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.78-82
    • /
    • 2005
  • Fishermen have higher risk of occupational injuries and disease due to frequent machine usage and direct contact to live biological materials. Moreover, growing elderly workers makes the susceptibility to occupational injuries and disease higher. This study was performed to investigate the occupational safety and health status among fishermen. The interview was carried out at Jumunjin and Geojin ports which were representative port at North East side of Korea. The structured questionnaire were used to interview the fishermen from AM 6:00 to PM 11:00 and total respondent were 97 workers. The results were followed; 7 fishermen of all respondents experienced occupational injuries during their work, 5 fishermen were needed to admission longer than 4 days. The injury types were contusion(4 persons), fracture(1 persons) and amputation(2 persons). The cause of injury might be the lack of caution and the unstability of working condition. These results suggested the ergonomical evaluation of working condition and proper management. But there was limited concern and studies on the policy on occupational safety and health on fishermen. So, further study was required to establish the sound policy of fishermen's occupational safety and health.

  • PDF

Partial Safety Factors for Geotechnical Bearing Capacity of Port Structures (항만구조물 지반지지력 산정을 위한 부분안전계수 결정)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Kim, Hong-Yeon;Kim, Baeck-Oon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.3
    • /
    • pp.156-162
    • /
    • 2010
  • When eccentric or inclined load acts on foundation of the port & harbor structures, partial safety factors of bearing capacity limit state were estimated using reliability analysis. Current Korean technical standards of port and harbor structures recommend to estimate the geotechnical bearing capacity using the simplified Bishop method. In practice, however, simple method of comparing ground reaction resistance with allowable bearing capacity has been mostly used by design engineers. While the simple method gives just one number fixed but somewhat convenient, it could not consider the uncertainty of soil properties depending on site by site. Thus, in this paper, partial safety factors for each design variable were determined so that designers do perform reliability-based level 1 design for bearing capacity limit state. For these, reliability index and their sensitivities were gained throughout the first order reliability method(FORM), and the variability of the random variables was also considered. In order to verify partial safety factors determined here, a comparison with foreign design codes was carried out and were found to be reasonable in practical design.

Proposal of Sliding Stability Assessment Formulas for an Interlocking Caisson Breakwater under Wave Forces (파랑하중에 대한 인터로킹 케이슨 방파제의 미끌림 안정성 평가식 제안)

  • Park, Woo-Sun;Won, Deokhee;Seo, Jihye
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • Recently, the possibility of abnormal waves of which height is greater than design wave height have been increased due to the climate change, and therefore it has been urgent to secure the stability for harbor structures. As a countermeasure for improving the stability of conventional caisson breakwaters, a method has been proposed in which adjacent caissons are interlocked with each other to consecutively resist the abnormal wave forces. In order to reflect this research trend, the reduction effect of the maximum wave force resulted from introducing a long caisson has been presented in the revision to the design criteria for ports and fishing harbors and commentary. However, no method has been proposed to evaluate the stability of interlocking caisson breakwater. In this study, we consider the effect of the phase difference of the oblique incidence of the wave based on the linear wave theory and apply the Goda pressure formula for considering design wave pressure distribution in the vertical direction. Sliding stability assessment formula of an interlocking caisson breakwater is proposed for regular, irregular, and multi-directional irregular wave conditions.

Development of Dry Process Caisson Method for Maintenance of Submerged Harbor Structure (수중 항만구조물의 유지보수를 위한 건식 케이슨 공법 개발)

  • Lee Joong-Woo;Oh Dong-Hoon;Kwak Seung-Kyu;Kim Sung-Tae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.163-170
    • /
    • 2006
  • Together with the trend of enhancement in domestic industrial development and economic progress due to import and export, the demand for construction of the roads, bridges, especially port facilities, and several coastal protection and ocean structures is increasing rapidly. MOMAF of Korean Government is driving construction of 9 new ports and renovation of the existing fishery ports. Among these structures most of bridge base, wharves, dolphins, quays, and jetties are being newly built of steel or concrete pile. As the base, supporting bulkheads, and piles are underwater after construction, it is difficult to figure out the status of structures and not enough to get maintenance and strengthen the structures. Every year, moreover, these works suck the government budget due to higher incomplete maintenance expense for protection from corrosions of structures and increased underwater construction period. For the purpose of cutting down the expense of government budget, it is necessary to extend the life cycle of the existing structures. Therefore, we developed a new method for maintenance of submerged structures near the waterline by allowing dry work environment with the floating caisson. The method shows easy to move around the working area and handle. It also showed not only a significant reduction maintenance expenses and time for anti-corrosion work but also better protection. This will be a milestone to reduce the maintenance and construction expenses for the shore and water structures.

  • PDF

Evalution for Joints of Coastal Environments Blocks (Coastal Environments 블록 적용을 위한 연결부 강도평가)

  • Kim, Chun-Ho;Kim, Kwang-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.176-182
    • /
    • 2009
  • Other damage can occur due to the preexisting dull structure and installation of nonenvironmental-friendly concrete structure, lack of function for preventing coastal erosion. Increase of personal income and fast spread of the concept of waterfront casued the initiation of many project to improve aging coastal ports. However, none of environment-friendly structure has been developed and pre-existing solid block, igloo block, tunnel block are used commonly. In piers and lighter's wharf where the ships are mooring, resonance by the generation of a reflected wave caused by penetration wave in the port and port wave increases wave heights in the port and makes difficult to maintain the temperature, causes problems in mooring ships and cargo-working, and eventually increase the occurance of damages of the small ships by the collision. Therefore, development of new types of blcok is necessary. To apply Coastal Environments block developed for this reason, it requires allowable bearing capacity evaluation of shear key. For this study, we made test specimen for connecting part of C.E. Block, and conducted friction test of boundary surface. Data obtained by the experiment was analyzed by finite element analysis and assessed the coefficient of friction between C.E. Block and boundary surface.

Numerical Analysis of Riverbed Changes at the Downstream of the Ji-Cheon (수치모형을 이용한 지천하류부의 하상변동 분석)

  • Choi, Ho;Rim, Chang-Soo;Jung, Jae-Wook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.117-125
    • /
    • 2011
  • River bed variation drops storage capacity of dams and reservoirs, and furthermore deteriorates safety of banks and peers. Therefore, understanding of bed variation is important to use and manage river water. Study section is downstream part of Ji- Cheon nearby Ji-Cheon Bridge which is located in Gum river basin. The river surveying at fourteen places with the length of 1,320m were undertaken on November 7, 2003 and September 24, 2004, and the results of river surveying were analyzed for the study. Real bed variation was compared with the simulation results of HEC-6 and GSTARS 3.0. Cross section data for the simulation of HEC-6 and GSTARS3.0 were composed of the basis of river surveying data on November 7, 2003. Hydrological data were acquired from Gu-Ryong watermark located at Ji-Chun Bridge. The research results revealed that when using Toffaleti equation, simulation results of two models were similar to the real bed variation. The bed variation simulated by using GSRARS 3.0 with only one stream tube was similar to the real bed variation. The bed variation simulated by using two models(HEC-6 and GSTRARS 3.0) with Toffaleti equation was also similar to the real bed variation. Therefore, it is expected that HEC-6 and GSTARS 3.0 models have applicability to predict the bed variation at the downstream of Ji-Cheon.

Possibility of Fishery in Offshore Wind Farms (해상풍력발전단지 내 어업 가능성에 관한 고찰)

  • Jung, Cho-Young;Hwang, Bo-Kyu;Kim, Sung-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.535-541
    • /
    • 2019
  • The purpose of this study was to investigate the possibility of fishery in offshore wind farms and evaluate the risk linked to the presence of turbines and submarine cables in these areas. With this objective, we studied an offshore wind farm in the Southwest Sea and the current state of vessels in the surrounding National Fishing Port. The risk assessment criteria for 22 fishing gears and methods were set by referring to the fishing boats; thereafter, the risk was assessed by experts. The fishing gears and methods that could be safely operated (i.e., associated with low risk) in the offshore wind farm were: single-line fishing, jigging, and the anchovy lift net. The risk was normal so that it is possible to operate, but the fishing gears and methods that need attention are: the set long line, drifting long line, troll line, squid rip hook, octopus pot, webfoot octopus pot, coastal fish pot, stow net on stake, winged stow net, stationary gill net, and drift gill net. Moreover, the fishing gears and methods difficult to operate in the of shore wind farm (i.e., associated with high risk) were: the dredge, beam trawl, and purse seine. Finally, those associated with very high risk and that should not be allowed in offshore wind farms were: the stow net, anchovy drag net, otter trawl, Danish seine, and bottom pair trawl.

A Study on the Evaluation of Safety Stiffness from Ship's Mooring Bollards (선박 접안용 계선주의 안전 강성 평가에 관한 연구)

  • Yu, Yong-Ung;Kim, Seung-Yeon;Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Mooring bollards are the mandatory facility in ports for they are the objects used to fasten the ship to its position at the berth. All the mooring bollards were installed following suggested sizes, numbers, materials and shape of installation according to Port and Fishing Design Standards. However, Korea has no management standard for use of mooring bollards to safety in ship berthing. In this research, the installation standard for mooring bollards including the holding power applied to mooring bollards in berthing was studied. Also, the performance of mooring bollards for minimum safety guarantee in berthing based on research of various specification by their sizes was analyzed. The analysis on mooring bollards was examined by each power on mooring bollards from the applied force in berthing divided into horizontal and vertical direction in order to examine the performance of domestic mooring bollards, the limit force is calculated based on detailed specification research result. As a result, the working stress according to the towing force was found to be at least 150Mpa and it was evaluated to be 60% of the limit strength. Also, by comparing each forces, the appropriateness was examined and the specification of maximum capability calculated. This performance evaluation method based on detail specification of mooring bollards will be expected to be useful to examine the appropriateness of mooring bollards for various types of vessel in berthing and to develop maintenance and management standard through the performance change evaluation referring to mooring bollard detailed specification changes.

Considerations and Alternative Approaches to the Estimation of Local Abundance of Legally Protected Species, the Fiddler Crab, Austruca lactea (법정보호종, 흰발농게(Austruca lactea) 서식 개체수 추정에 대한 검토와 대안)

  • Yoo, Jae-Won;Kim, Chang-Soo;Park, Mi-Ra;Jeong, Su-Young;Lee, Chae-Lin;Kim, Sungtae;Ahn, Dong-Sik;Lee, Chang-Gun;Han, Donguk;Back, Yonghae;Park, Young Cheol
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.122-132
    • /
    • 2021
  • We reviewed the methods employed in Korean tidal flat surveys to measure the local abundance of the endangered wildlife and marine protected species, the fiddler crab, Austruca lactea. A complete census for infinite population is impossible even in a limited habitat within a tidal flat, and density estimates from samples strongly vary due to diverse biological and ecological factors. The habitat boundaries and areas shift with periodicities or rhythmic activities of organisms as well as measurement errors. Hence the local abundance calculated from density and habitat areas should be regarded as transient. This conjecture was valid based on the spatio-temporal variations of the density averages, standard error ranges, and spatial distribution of the crab, A. lactea observed for 3 years (2015-2017) in Songdo tidal flat in Incheon. We proposed the potential habitat areas using the occurrence probability of 50% from logistic regression model, reflecting the importance of habitat conservation value as an alternative to local abundance. The spatial shape of potential habitat predicted from a generalized model would remain constant over time unless the species' critical environmental conditions change rapidly. The species-specific model is expected to be used for the introduction of desired species in future habitat restoration/creation projects.