DOI QR코드

DOI QR Code

Considerations and Alternative Approaches to the Estimation of Local Abundance of Legally Protected Species, the Fiddler Crab, Austruca lactea

법정보호종, 흰발농게(Austruca lactea) 서식 개체수 추정에 대한 검토와 대안

  • 유재원 ((주)한국연안환경생태연구소) ;
  • 김창수 ((주)한국연안환경생태연구소) ;
  • 박미라 ((주)한국연안환경생태연구소) ;
  • 정수영 ((주)한국연안환경생태연구소) ;
  • 이채린 ((주)한국연안환경생태연구소) ;
  • 김성태 ((주)한국연안환경생태연구소) ;
  • 안동식 ((주)한국연안환경생태연구소) ;
  • 이창근 (한국어촌어항공단) ;
  • 한동욱 (PGA생태연구소) ;
  • 백용해 ((사)녹색습지교육원) ;
  • 박영철 ((주)뉴워터텍)
  • Received : 2021.03.08
  • Accepted : 2021.04.02
  • Published : 2021.05.31

Abstract

We reviewed the methods employed in Korean tidal flat surveys to measure the local abundance of the endangered wildlife and marine protected species, the fiddler crab, Austruca lactea. A complete census for infinite population is impossible even in a limited habitat within a tidal flat, and density estimates from samples strongly vary due to diverse biological and ecological factors. The habitat boundaries and areas shift with periodicities or rhythmic activities of organisms as well as measurement errors. Hence the local abundance calculated from density and habitat areas should be regarded as transient. This conjecture was valid based on the spatio-temporal variations of the density averages, standard error ranges, and spatial distribution of the crab, A. lactea observed for 3 years (2015-2017) in Songdo tidal flat in Incheon. We proposed the potential habitat areas using the occurrence probability of 50% from logistic regression model, reflecting the importance of habitat conservation value as an alternative to local abundance. The spatial shape of potential habitat predicted from a generalized model would remain constant over time unless the species' critical environmental conditions change rapidly. The species-specific model is expected to be used for the introduction of desired species in future habitat restoration/creation projects.

본 연구에서는 우리나라의 갯벌에서 조사대상으로 삼는 멸종위기야생생물이자 해양보호생물, 흰발농게(Austruca lactea)의 전체 개체수 추정 방법을 검토하였다. 일반적으로 무한모집단에 대한 전수조사는 불가능하며 이는 갯벌 내 제한된 서식처에서 개체수를 추정하더라도 마찬가지이다. 표본으로부터 추정되는 서식 밀도 역시 다양한 생물학적, 생태학적 요인들로 인해 높은 변동성을 보인다. 서식처 경계와 면적은 측정 오차뿐만 아니라 생물의 주기성이나 리듬 활동(주야, 간만 주기 등)에 따라서도 달라진다. 따라서 밀도와 서식처 면적으로 산출되는 전체 개체수는 일시적인 것으로 간주되어야 한다. 이 같은 추정은 인천 송도 갯벌에서 3년 간 관찰된 흰발농게(A. lactea)의 평균 밀도와 표준오차 범위 그리고 공간분포의 시공간적 변동성에 근거하면 타당한 것으로 볼 수 있었다. 본 연구에서는 로지스틱 회귀모형의 출현 확률인 50%를 기준으로, 서식처 보존 가치의 중요성을 반영하는 잠재적 서식처 면적을 전체 개체수 추정의 대안으로 제시하였다. 보편성을 갖춘 모형으로부터 예측되는 잠재적 서식처는 대상종의 주요 환경조건이 급격하게 변하지 않는다면 시간에 따라 일정한 모습을 유지할 것이다. 특정종을 대상으로 개발되는 모형은 추후 서식처 복원/조성 사업에서도 원하는 생물의 정착을 유도하는데도 활용이 가능할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 2019년 한국어촌어항공단 고창 갯벌생태계복원사업 실시설계 수립 용역사업(계약번호 2019080A9D0-01)의 지원에 의해 이루어진 것임을 알려드립니다.

References

  1. Cagnacci, F, Boitani, L, Powell, RA and Boyce, MS (2010). Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philosophical Transactions of the Royal Society B, 365, pp. 2157-2162. [DOI: 10.1098/rstb.2010.0107]
  2. Colpo, KD and Negreiros-Fransozo, ML (2016). Sampling technique affects the population structure assessments of fiddler crab Minuca vocator (Herbst, 1804)(Ocypodidae: Gelasiminae). Nauplius, 24, e2016015. [DOI: 10.1590/2358-2936e2016015]
  3. De Lange, HJ, Lahr, J, Van der Pol, JJ, Wessels, Y and Faber, JH (2009). Ecological vulnerability in wildlife: an expert judgment and multicriteria analysis tool using ecological traits to assess relative impact of pollutants. Environmental Toxicology and Chemistry: An International Journal, 28(10), pp. 2233-2240. [DOI https://doi.org/10.1897/08-626.1]
  4. Decker, MB, Brown, CW, Hood, RR, Purcell, JE, Gross, TF, Matanoski, JC, Bannon, RO and Setzler-Hamilton, EM (2007). Predicting the distribution of the scyphomedusa Chrysaora quinquecirrha in Chesapeake Bay. Marine Ecology Progress Series, 329, pp. 99-113. [DOI: 10.3354/meps329099]
  5. Diaconis, P and Efron, B (1983). Computer-intensive methods in statistics. Scientific American, 248, pp. 116-130. https://doi.org/10.1038/scientificamerican0583-116
  6. Diaz, RJ, Solan, M and Valente, RM (2004). A review of approaches for classifying benthic habitats and evaluating habitat quality. Journal of environmental management, 73(3), pp. 165-181. [DOI https://doi.org/10.1016/j.jenvman.2004.06.004]
  7. Efford, MG and Dawson, DK (2012). Occupancy in continuous habitat. Ecosphere, 3(4), pp. 1-15. [DOI http://dx.doi.org/10.1890/ES11-00308.1]
  8. Fischer, LK, von der Lippe, M and Kowarik, I (2013). Urban grassland restoration: which plant traits make desired species successful colonizers? Applied Vegetation Science, 16(2), pp. 272-285. [DOI: 10.1111/j.1654-109X.2012.01216.x]
  9. Giller, PS (1984). Community structure and the niche. Chapman and Hall, London.
  10. Gochang-gun Office (GGO) (2020). Implementation planning report of Gochang tidal flat ecosystem restoration project. Gochang-gun Office. [Korean Literature]
  11. Halpern, BS, Longo, C, Hardy, D, McLeod, KL, Samhouri, JF, Katona, SK, Kleisner, K, Lester, SE, O'Leary, J, Ranelletti, M, Rosenberg, AA, Scarborough, C, Selig, ER, Best, BD, Brumbaugh, DR, Chapin, FS, Crowder, LB, Daly, KL, Doney, SC, Elfes, C, Fogarty, MJ, Gaines, SD, Jacobsen, KI, Karrer, LB, Leslie, HM, Neeley, E, Pauly, D, Polasky, S, Ris, B, St Martin, K, Stone, GS, Sumaila, UR and Zeller, D (2012). An index to assess the health and benefits of the global ocean. Nature, 488(7413), pp. 615-622. [DOI: 10.1038/nature11397]
  12. Hemmi, JM (2005). Predator avoidance in fiddler crabs: 1. Escape decisions in relation to the risk of predation. Animal Behaviour, 69(3), pp. 603-614. [DOI: 10.1016/j.anbehav.2004.06.018]
  13. Hodgson, JA, Moilanen, A, Wintle, BA and Thomas, CD (2011). Habitat area, quality and connectivity: Striking the balance for efficient conservation. Journal of Applied Ecology, 48(1), pp. 148-152. [DOI: 10.1111/j.1365-2664.2010.01919.x]
  14. Hong, JS, Yoo, JW and Park, HS (1995). Niche characterization of the three species of genus Ophiura (Echinodermata, Ophiuroidea) in Korean waters, with special emphasis on the distribution of Ophiura sarsi vadicola Djakonov. Journal of the Korean Society of Oceanography, 30(5), pp. 442-457. [Korean Literature]
  15. Hutchinson, GE (1959). Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93(870), pp. 145-159. https://doi.org/10.1086/282070
  16. Korea Forest Service (KFS) (2003). Study on the chestnut cultivation and government policy. Korea Forest Service. [Korean Literature]
  17. Korea National Park Research Institute (KNPRI) (2017). Investigation on the distribution characteristics of the endangered wildlife. Korea National Park Research Institute. [Korean Literature]
  18. Korean Association of Biological Sciences (KAOBS) (1998). Dictionary of biology. Academy Book. [Korean Literature]
  19. Kyunghyang (2020). http://news.khan.co.kr/kh_news/khan_art_view.html?art_id=202008102105015
  20. Larson, MA, Millspaugh, JJ, and Thompson III, FR (2009). A review of methods for quantifying wildlife habitat in large landscapes. Models for Planning Wildlife Conservation in Large Landscapes, JJ Millspaugh and FR Thompson III (eds.), Elsevier, pp. 225-250.
  21. Lee, TJ and Lee, SK (2012). Repeatability and reproducibility in effective porosity measurements of rock samples. Geophysics and Geophysical Exploration, 15(4), pp. 209-218. [Korean Literature] [DOI http://dx.doi.org/10.7582/GGE.2012.15.4.209]
  22. Liu, R (1990). Studies on marine ecology of the Yellow Sea in China. Yellow Sea Research, 3, pp. 45-71. [Korean Literature]
  23. Liu, R, Cui, Y, Xu, F and Tang, Z (1983). Ecology of macrobenthos of the East China Sea and adjacent waters. Proceeding of International Symposium on the sedimentation on the continental shelf, with special reference to the East China Sea, Acta Oceanologica Sinica, China Ocean Press, Beijing, pp. 795-818.
  24. Ludwig, JA, and Reynolds, JF (1988). Statistical ecology: a primer in methods and computing. John Wiley and Sons.
  25. May, RM (1975). Patterns of species abundance and diversity. Ecology and evolution of communities, ML Cody and JM Diamond (eds.), Belnap Press, Cambridge, MA, pp. 81-120.
  26. McLachlan, A and Jaramillo, E (1995). Zonation on sandy beaches. Oceanography and Marine Biology: an annual review, 33, pp. 305-335.
  27. Nakasone, Y and Murai, M (1998). Mating behavior of Uca lactea perplexa (Decapoda: Ocypodidae). Journal of Crustacean Biology, 18(1), pp. 70-77. [DOI https://doi.org/10.1163/193724098X00089]
  28. National Institute of Biological Resources (NIBR) (2020). 2019-2020 Winter Waterbird Census of Korea. National Institute of Biological Resources. [Korean Literature]
  29. National Institute of Ecology (NIE) (2019). Survey of geographic distribution of the fiddle crab, Austruca lactea (Class II endangered wildlife) in Seonyudo Beach. National Institute of Ecology. [Korean Literature]
  30. Palmer, MA, Ambrose, RF and Poff, NL (1997). Ecological theory and community restoration ecology. Restoration ecology, 5(4), pp. 291-300. [DOI https://doi.org/10.1046/j.1526-100X.1997.00543.x]
  31. Pearson, TH and Rosenberg, R (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology: An annual review, 16, pp. 229-311.
  32. Pontee, N (2013). Defining coastal squeeze: A discussion. Ocean and coastal management, 84, pp. 204-207. [DOI https://doi.org/10.1016/j.ocecoaman.2013.07.010]
  33. Preston, FW (1948). The commonness, and rarity, of species. Ecology, 29(3), pp. 254-283. https://doi.org/10.2307/1930989
  34. Reise, K (1985). Tidal flat ecology - An experimental approach to species interactions. Springer-Verlag.
  35. Rho, P (2009). Use of GIS to develop a multivariate habitat model for the leopard cat (Prionailurus bengalensis) in mountainous region of Korea. Journal of Ecology & Field Biology, 32, pp. 229-236. [DOI https://doi.org/10.5141/JEFB.2009.32.4.229]
  36. Roloff, GJ and Haufler, JB (1997). Establishing population viability planning objectives based on habitat potentials. Wildlife Society Bulletin, 25(4), pp. 895-904.
  37. Sakai, T (1976). Crabs of Japan and the adjacent seas. Kodansha, Tokyo, Japan.
  38. Shin, PKS, Yiu, MW and Cheung, SG (2004). Behavioural adaptations of the fiddler crabs Uca vocans borealis (Crane) and Uca lactea lactea (De Haan) for coexistence on an intertidal shore. Marine and Freshwater Behaviour and Physiology, 37(3), pp. 147-160. [DOI https://doi.org/10.1080/10236240400006117]
  39. Stalmans, ME, Witkowski, ET and Balkwill, K (2002). Evaluating the ecological relevance of habitat maps for wild herbivores. Journal of Range Management Archives, 55(2), pp. 127-134. [DOI: 10.2458/azu_jrm_v55i2_stalmans]
  40. Whittaker, RH, Levin, SA and Root, RB (1973). Niche, habitat, and ecotope. The American Naturalist, 107(955), pp. 321-338. https://doi.org/10.1086/282837
  41. Yeonsu-gu Office (YGO) (2015). Final report of monitoring program of Songdo tidal flat, wetland protected area, 2015. Yeonsu-gu Office. [Korean Literature]
  42. Yeonsu-gu Office (YGO) (2016). Final report of monitoring program of Songdo tidal flat, wetland protected area, 2016. Yeonsu-gu Office. [Korean Literature]
  43. Yeonsu-gu Office (YGO) (2018). Final report of monitoring program of Songdo tidal flat, wetland protected area, 2017. Yeonsu-gu Office. [Korean Literature]
  44. Yoo, JW (1998). The spatial distribution and long-term variation of macrofaunal communities on macrotidal flats in the west central coast of Korea. Ph.D. Thesis, Inha University, Incheon, Korea.
  45. Yoo, JW, Lee, HJ and Hong, JS (2016). Long-term variations in macrobenthic community diversity (species number) in the Chokchon macrotidal flat, Incheon, Korea. Ocean Science Journal, 51(3), pp. 435-445. [DOI https://doi.org/10.1007/s12601-016-0039-3]