• Title/Summary/Keyword: 양전자 방출촬영

Search Result 128, Processing Time 0.022 seconds

Evaluation of PET Image for Fluorine-18 and Gallium-68 using Phantom in PET/CT (PET/CT에서 Phantom을 이용한 Fluorine-18, Gallium-68 방사성 핵종의 PET 영상 평가)

  • Yoon, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.41 no.4
    • /
    • pp.321-327
    • /
    • 2018
  • The purpose of this study is to compare PET imaging performance with Fluorine-18 ($^{18}F$) and Gallium-68 ($^{68}Ga$) for influence of physical properties of PET tracer. Measurement were performed on a Siemens Biograph mCT64 PET/CT scanner using NEMA IEC body phantom and Flangeless Esser PET phantom containing filled with $^{18}F$ and $^{68}Ga$. Emission scan duration(ESD) was set to 1, 2, 3, 4 and 5min/bed for $^{68}Ga$ and 1min/bed for $^{18}F$. The PET image were evaluated in terms of contrast, spatial resolution. Under same condition, The percentage of contrast recovery measured in the phantom ranged from 16.88% to 72.56% for $^{68}Ga$ and from 27.51% to 74.43% for $^{18}F$ and The FWHM value to evaluate spatial resolution was 10.96 mm for $^{68}Ga$ and 9.19 mm for $^{18}F$. For this study, $^{18}F$ produces better image contrast and spatial resolution than $^{68}Ga$ due to higher positron yield and lower positron energy ($^{18}F$: 96.86%, 633.5 keV, $^{68}Ga$: 88.9%, 1899 keV), The physical properties of PET tracer effect on the PET image. $^{68}Ga$ image applying ESD of 3, 4, 5min/bed were showed similar to $^{18}F$ image with ESD of 1min/bed. This study suggests that increasing ESD for acquiring $^{68}Ga$ PET image seem to be similar to $^{18}F$ image.

A Study of Standarzied Uptake Value Change on the Type of Mateiral (물질의 종류에 따른 표준섭취계수의 변화에 관한 연구)

  • Kim, Ki-Jin;Kim, Chong-Yeal;Bae, Seok-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3572-3578
    • /
    • 2011
  • In Positron Emission Tomography Computed Tomography, Standardized Uptake Value(SUV)is most generally used to discern tumors. However, SUV may be influenced other factors. In this study, experiment was conducted distrotion in image and change in SUV according to substance with GEMINI TF PET/CT of Philips.. SUV for materials resulted in 1.8 for stainless, 1.4 for stent, 2.4 for iodine contrast medium, 2.6 for Barium Sulfate, 1.6 for Gypsum, and 1.4 for paraffin respectively. The distortion of image was remarkable for the iodine contrast medium and Barium Sulfate. For the barium sulfate, the higher the density, the larger the distrotion of the images. As a result of test, it appeared that the metallic substance whose atomic number is low and contrast medium whose concentration is low didn't affect the distortion in image and the change in SUV. However, it tis necessary to minimize distortion in image and change in SUV, by removing the metallic substance and checking if there are contrast mdeium or before examination.

Evaluation of Merkel Cell Carcinoma Metastasis Using Positron Emission Topography/CT (양전자방출단층촬영술(PET/CT)을 이용한 메르켈 세포암(Merkel cell carcinoma)의 전이 평가)

  • Kwon, Soon Hong;Song, Jin Kyung;Yoo, Gyeol;Byeon, Jun Hee
    • Archives of Plastic Surgery
    • /
    • v.33 no.2
    • /
    • pp.233-236
    • /
    • 2006
  • Merkel cell carcinoma is rare skin malignancy originated from epidermal mechanoreceptor of neural origin. The tumor usually affects older individuals at sun exposed area such as head, neck and extremity. Subclinical involvement of regional lymph node is reported frequently at the time of initial treatment. Thus even asymptomatic patients who present with clinically localized tumor should undergo evaluation with computed tomography and lymphangiography. Positron emission tomography(PET) scans can imaging the metabolic difference of malignant tumors. Increased glucose uptake of malignant tumor cells are detected by PET scanner. PET scans can provide qualitative and quantitative informations about systemic metastasis of tumors. Although there are no data that define the efficacy of PET scans in the initial diagnostic evaluation of head and neck cancer, they could be considered. Current standards of treatment of Merkel cell carcinoma is wide surgical excision and regional lymphadenectomy if there are suspicious lymph nodes. The author reported a patient with Merkel cell carcinoma of cheek. Wide surgical excision and postoperative PET/CT was done for evaluation of regional lymph node and distant metastasis. There were two hot-uptakes in patient's neck, so they were considered as metastatic node, but finally they were proved to be tuberculosis lymphadenitis after excision.

Analysis of Scattering Rays and Shielding Efficiency through Lead Shielding for 0.511 MeV Gamma Rays Based on Skin Dose (피부선량을 기준으로 0.511 MeV 감마선에 대한 납 차폐체의 산란선 및 차폐 효율 분석)

  • Jang, Dong-Gun;Park, Eun-Tae
    • Journal of radiological science and technology
    • /
    • v.43 no.4
    • /
    • pp.259-264
    • /
    • 2020
  • Radiation causes radiation hazards in the human body. In Korea, a case of radiation necrosis occurred in 2014. In this study, the scatter and shielding efficiency according to lead shielding were classified into epidermis and dermis for 0.511 MeV used in nuclear medicine. In this study, experiments were conducted using the slab phantom that represents calibration and the dose of human trunk. Experimental results showed that the shielding rate of 0.25 mmPb was 180% in the epidermis and 96% in the dermis. Shielding at 0.5mmPb showed shielding rates of 158%in the epidermis and 82% in the dermis. As a result of measuring the absorbed dose by subdividing the thickness of the dermis into 0.5 mm intervals, when the shielding was carried out at 0.25 mmPb, the dose appeared to be about 120% at 0.5 mm of the dermis surface, and the dose was decreased at the subsequent depth. Shielding at 0.5 mmPb, the dose appeared to be about 101% at the surface 0.5 mm, and the dose was measured to decrease at the subsequent depth. This result suggests that when lead aprons are actually used, the scattering rays would be sufficiently removed due to the spaces generated by the clothes and air, Therefore, the scattered ray generated from lead will not reach the human body. The ICRU defines the epidermis (0.07), in which the radiation-induced damage of the skin occurs, as the dose equivalent. If the radiation dose of the dermis is considered in addition, it will be helpful for the evaluation of the prognosis for radiation hazard of the skin.

Optimal Scan time Analysis for Pancreatic Cancer Distinction in Dual time PET-CT Exam (이중시간 PET/CT 검사에서 췌장암 판별을 위한 최적의 Scan time 분석)

  • Chang, Boseok
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.305-311
    • /
    • 2019
  • In this study, present the most useful delay scan time by statistical analysis of SUVm data for 30 suspected pancreatic cancer patients. Two statistical analysis and a mathematical model was applied to the theoretical formula by glucose and insulin mechanics, and a mathematical model was created. Statistical analysis was performed via Metlab p/g. Optimal delay scan time was suggested by Metlab p/g for the change of SUV value over time.In this study, for diagnosis pancreatic cancer by dual time point PET/CT, propose optimal delay scan time 131.5 minuts. The proposed delay scan time showed statistical reliability applicable to the diagnosis of pancreatic cancer (p<0.05). Delayed scanning with the suggested delay scan time of 131.5 minutes is considered to be useful for the diagnosis of pancreatic cancer compared to general PET / CT scan.hen the delayed test is performed with the proposed delay scan time 131.5 minuts, Compared with general PET/CT scans.

Recent Research Trend in Lateral Flow Immunoassay Strip (LFIA) with Colorimetric Method for Detection of Cancer Biomarkers (암 바이오마커 검출용 비색법 기반 측면 흐름 면역 크로마토그래피 분석법(LFIA) 스트립의 최신 연구 동향)

  • Lee, Sooyoung;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.585-590
    • /
    • 2020
  • Successful early diagnosis of cancer diseases such as lung, prostate, liver and adrenocortical carcinoma is a key step in determining the cost of treatment, survival rate, and cure rate. Most of current cancer diagnosis systems including biopsy, computed tomography (CT), positron emission tomography (PET)-CT, magnetic resonance imaging (MRI), ultrasonography, etc., require expensive and complicated equipment with highly trained human resources. Global medical and scientific communities have thus made numerous efforts on developing effective but rapid disease management system via introducing a wide spectrum of point-of-care medical diagnosis devices. Among them, a lateral flow immunoassay strip technique has gained a great attention due to many advantages such as cost-effectiveness, short inspection time, and user friendly accessibility. In this mini-review, we will highlight recent research trend on the development of colorimetry based LFIA strips for cancer diagnosis and discuss the future research direction and potential applications.

Usefulness of Brain Phantom Made by Fused Filament Fabrication Type 3D Printer (적층 제조형 방식의 3D 프린터로 제작한 뇌 팬텀의 유용성)

  • Lee, Yong-Ki;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.453-460
    • /
    • 2020
  • The price of the Brain phantom (Hoffman 3D brain phantom) used in nuclear medicine is quite expensive, it is difficult to be purchased by a medical institution or an educational institution. Therefore, the purpose of present research is to produce a low-price 3D brain phantom and evaluate its usefulness by using a 3D printer capable of producing 3D structures. The New 3D brain phantom consisted of 36 slices 0.7 mm thick and 58 slices 1.5 mm thick. A 0.7 mm thick slice was placed between 1. 5 mm thick slices to produce a composite slice. ROI was set at the gray matter and white matter scanned with CT to measure and compare the HU, in order to verify the similarity between PLA which was used as the material for the New 3D brain phantom and acrylic which was used as the material for Hoffman 3D brain phantom. As a result of measuring the volume of each Phantom, the error rate was 3.2% and there was no difference in the signal intensity in five areas. However, there was a significant difference in the average values of HU which was measured at the gray and white matter to verify the similarity between PLA and acrylic. By reproducing the previous Hoffman 3D brain phantom with a 100 times less cost, I hope this research could contribute to be used as the fundamental data in the areas of 3D printer, nuclear medicine and molecular imaging and to increasing the distribution rate of 3D brain phantom.

PET Detector Design with a Small Number of Photo Sensors (적은 수의 광센서를 사용한 PET 검출기 설계)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.525-531
    • /
    • 2021
  • The detector of the positron emission tomography (PET) is composed using a plurality of scintillation pixels and photo sensors. The use of multiple photo sensors increases cost and complicates signal processing. In this study, a detector with reduced cost and simple signal processing was designed using a small number of photo sensors. A scintillation pixel and a small number of photo sensors were used, and a optical guide was used to deliver light to all the photo sensors. A reflector is applied to the scintillation pixel and the optical guide to transmit the maximum amount of light to the photo sensor. A diffuse reflector and a specular reflector were used for the reflector, and a flood image was obtained by applying different thicknesses of the optical guide. An optimal combination was selected through comparative analysis of the acquired flood images. As a result, when specular reflectors were used for both the scintillation pixel and the optical guide, excellent flood images were obtained from optical guides of all thicknesses. For the optical guide, the optimal image was obtained when using a 3 mm thickness in consideration of the size of the image and the analysis of the point where the image of the scintillation pixel was formed.

The Evaluation of Denoising PET Image Using Self Supervised Noise2Void Learning Training: A Phantom Study (자기 지도 학습훈련 기반의 Noise2Void 네트워크를 이용한 PET 영상의 잡음 제거 평가: 팬텀 실험)

  • Yoon, Seokhwan;Park, Chanrok
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.655-661
    • /
    • 2021
  • Positron emission tomography (PET) images is affected by acquisition time, short acquisition times results in low gamma counts leading to degradation of image quality by statistical noise. Noise2Void(N2V) is self supervised denoising model that is convolutional neural network (CNN) based deep learning. The purpose of this study is to evaluate denoising performance of N2V for PET image with a short acquisition time. The phantom was scanned as a list mode for 10 min using Biograph mCT40 of PET/CT (Siemens Healthcare, Erlangen, Germany). We compared PET images using NEMA image-quality phantom for standard acquisition time (10 min), short acquisition time (2min) and simulated PET image (S2 min). To evaluate performance of N2V, the peak signal to noise ratio (PSNR), normalized root mean square error (NRMSE), structural similarity index (SSIM) and radio-activity recovery coefficient (RC) were used. The PSNR, NRMSE and SSIM for 2 min and S2 min PET images compared to 10min PET image were 30.983, 33.936, 9.954, 7.609 and 0.916, 0.934 respectively. The RC for spheres with S2 min PET image also met European Association of Nuclear Medicine Research Ltd. (EARL) FDG PET accreditation program. We confirmed generated S2 min PET image from N2V deep learning showed improvement results compared to 2 min PET image and The PET images on visual analysis were also comparable between 10 min and S2 min PET images. In conclusion, noisy PET image by means of short acquisition time using N2V denoising network model can be improved image quality without underestimation of radioactivity.

Clinical Significance of FDG PET-CT Scan at 12 Weeks after Curative Radiation Therapy in Patients with Head and Neck Cancer (두경부암 환자에서 근치적 방사선치료 후 12주 시행한 양전자방출촬영의 임상적 중요성에 대한 연구)

  • Kim, Young-il;Kim, Jun-sang;Kwon, Jeanny;Kim, Sup;Seo, Youngduk;Koo, Bon-seok;Chang, Jae-won;Cho, Moon-June
    • Korean Journal of Head & Neck Oncology
    • /
    • v.37 no.1
    • /
    • pp.17-22
    • /
    • 2021
  • Background/Objectives: To evaluate clinical significance of FDG PET-CT for detection of residual cancer cells after curative radiation therapy or chemoradiotherapy for patients with squamous cell carcinoma (SCC) of Head and Neck Materials & Methods: A retrospective analysis of patients with SCC of Head and neck with curative radiotherapy or chemoradiotherpy between June 2011 and Jan. 2019 was performed. Sixty patients were treated with Intensity-modulated radiotherapy (IMRT). The Metabolic responses were evaluated on the post-treatment FDG PET-CT at 12 weeks after curative radiotherapy completion. Results: Median follow up was 51.5 months (3-102). The overall survival (OS), disease free survival (DFS), local control rate (LCR), and Distant metastasis free survival (DMFS) at 5 years were 80.5%, 80.1%, 87.7% and 89.1%. Metabolic CR was found in 43 (71.7%) and partial metabolic response (PR) was noted in 17 (14.6%). Metabolic CR was significantly correlated with OS, DFS, LCR, and DMFS. On multivariate analysis, Metabolic CR remained significant for DFS and LCR. Conclusion: Metabolic CR on post-radiotherapy FDG PET-CT is highly predictive of increased DFS and LCR in patients with head and neck cancer.