• Title/Summary/Keyword: 양생 온도

Search Result 356, Processing Time 0.019 seconds

Investigation of Early-Age Concrete Strength Development Using Hardening Accelerator (경화촉진제를 사용한 콘크리트의 초기강도 발현 특성 검토)

  • Kim, Gyu-Yong;Kim, Yong-Ro;Park, Jong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.309-316
    • /
    • 2016
  • In this study, performance of hardening accelerator types which promote setting and hardening of cement has been reviewed in order to develop early age strength of concrete with compressive strength of 21~27 MPa after examination of strength development of the concrete at early age according to curing temperature and unit cement(binder) content. As results, soluble mineral salt showed better hardening acceleration effect than organic salt in the scope of this study. Also, hydration reaction accelerating effect of $C_3S$ by Soluble mineral salt is effective on development of early age compressive strength and it was shown that the Pt's hydration reaction accelerating effect was the best. Construction duration reduction can be expected by securing compressive strength for prevention of early aged freezing damage in 25hour-curing time under curing temperature at $15^{\circ}C$. Also, it was shown that compressive strength of specimen cured at $5^{\circ}C$ was similar with plain specimen cured at $10^{\circ}C$. Therefore, it is expected that fuel costs and carbon dioxide can be reduced when the same construction duration is considered.

The Effect of the Replacement of Grinded Fly Ash according to Curing Temperature on Repair Mortar Based on Polymer Admixture (폴리머수지 기반 보수모르타르에서 양생온도에 따른 미분쇄된 플라이애시 치환율의 영향)

  • Sim, Jae-Il;Mun, Ju-Hyun;Yun, In-Gu;Jeon, Young-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.116-124
    • /
    • 2015
  • The objective of this study is to evaluate the effects of the replacement levels of grinded fly-ash on the repaired mortar based on a polymer. The main parameters are the curing temperature and replacement levels of grinded fly-ash. The curing temperature and the replacement levels of grinded fly-ash are varied at $40^{\circ}C$, $20^{\circ}C$ and $5^{\circ}C$, and between 0% and 35% of the total binder by weight, respectively. The flow in fresh mortar and compressive strengths according to ages, the relationship of stress-strain, elastic modulus and modulus rupture in hardened mortar, as well as scanning the electron microscopy and the X-ray diffraction of mortar, were measured, respectively. The test results showed that the flow, elastic modulus and modulus rupture are great in mortar specimens with 20~30% of the replacement levels of grinded fly-ash. In addition, compressive strengths according to ages were affected by the replacement levels of grinded fly-ash and the curing temperature indicated that the strength development ratio of mortar with 20% of the replacement levels of grinded fly-ash was greater than others. In the prediction of the compressive strength specified by the ACI 209 code, the strength development at an early and late age can be generalized by the functions of the replacement levels of grinded fly-ash and the curing temperature. In the analysis of scanning the electron microscopy and the X-ray diffraction, the number and intensity of peaks increased and the form of CSH gels on the surface of the particle of grinded fly-ash was observed.

Evaluation on Workability and Compressive Strength Development of Concrete Using Modified Fly-Ash by Vibration Grinding (진동분쇄를 사용한 개질 플라이애시 콘크리트의 유동성 및 압축강도 발현 평가)

  • Ahn, Tae-Ho;Yang, Keun-Hyeok;Jeon, Young-Su
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.66-74
    • /
    • 2021
  • The objective of this study is to evaluate the practical application potential and limitations of the modified fly ash(MFA) by vibration grinding as a partial replacement of ordinary portland cement(OPC). The test parameters investigated were the replacement level of fly ash(FA) and FA for OPC, varying from 10% to 40%, and curing temperatures of 5, 20, and 40℃. The various characteristics(including slump, air content, bleeding, setting time, compressive strength development, and hydration products) of MFA concrete were measured and then compared with those of the concrete with conventional FA. Test resul ts showed that the MFA prefers to FA in reducing the bl eeding of fresh concrete and enhancing the compressive strength gain at an early age. The compressive strength ratios between MFA and FA concrete specimens at an age of 1 day were 135%, 146%, and 111% at the curing temperatures of 5, 20, and 40℃, respectively. The corresponding ratios at an age of 28 days were approximately 110%, regardless of the curing temperatures. The X-ray diffraction analysis also revealed less calcium hydroxide products in MFA pastes than in FA pastes.

Performance Based Evaluation of Concrete Material Properties from Climate Change Effect on Temperature and Humidity Curing Conditions (기후변화의 온도와 습도 양생조건에 따른 콘크리트 재료특성의 성능중심평가)

  • Kim, Tae-Kyun;Shin, Jae-Ho;Shin, Dong-Woo;Shim, Hyun-Bo;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.114-122
    • /
    • 2014
  • Currently, global warming has become a serious problem arising from the usage of fossil fuels such as coal and petroleum. Moreover, due to the global warming, heat wave, heavy snow, heavy rain, super typhoon are frequently occurring all over the world. Due to these serious natural disasters, concrete structures and infrastructures are seriously damaged or collapsed. In order to handle these problems, climate change oriented construction technology and codes are necessary at this time. Therefore, in this study, the validity of the present concrete mixture proportions are evaluated considering temperature and humidity change. The specimens cured at various temperature and humidity conditions were tested to obtain their compressive and split tensile strengths at various curing ages. Moreover, performance based evaluation (PBE) method was used to analyze the satisfaction percentage of the concrete cured at various condition. From the probabilistic method of performance evaluation of concrete performance, feasibility and usability can be determined for future concrete mix design.

양생을 이용한 하수 슬러지 소각재의 재활용 연구

  • 이기환;이태호;전기석
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2002.05b
    • /
    • pp.273-274
    • /
    • 2002
  • 본 연구는, 생활 하수 슬러지가 대부분인 충남 지역에서 발생되는 하수 슬러지의 물리ㆍ화학적인 성질을 기초로 하여 소각재의 안정적인 처분과 재활용을 위한 가능성을 확인하여 하수 슬러지 소각회의 적절한 처분방안과 제반 문제점 등을 제시하고, 그 문제점들의 해결방안을 모색하였다. 그 결과 하수 슬러지의 함수율은 약 80 % 정도 되며, 유기물이 고형물의 50% 정도로 관찰되었다. 그리고 비휘발성 고형물인 무기물은 $SiO_2$-$Al_2$$O_3$가 주성분으로 관찰되었으며, 주요 광물은 하수 슬러지가 소각 온도 및 소성 온도에 따라 변화하는 것으로 나타났다. 그리고, 이러한 변화는 소각재의 최종 처분시 고려되어야 하는 중요한 요인로 작용한다. 또한 하수 슬러지 소각재에 시멘트 및 첨가제의 종류, 그리고 양생 조건 등에 따라 약 100 ~ 200 kgㆍf/$\textrm{cm}^2$의 압축 강도를 가지는 것으로 조사되어, 소각에 따른 최종 부산물인 소각재의 재활용 가능성이 매우 높다는 것을 확인할 수 있었다.

  • PDF

Temperature History of Wall Concrete with Heat Insulating Curing Method Subjected to Severly Cold Climate (혹한온도 조건에서의 양생방법 변화에 따른 벽체 콘크리트의 온도이력 특성)

  • Son, Ho-Jung;Han, Sang-Yoon;Cheong, Sang-Hyeon;Ahn, Samg-Ku;Han, Cheon-Goo;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.51-52
    • /
    • 2011
  • This study is to propose a curing method for a concrete wall structure under severe cold climate. The curing methods of using heated cable, heated panel and insulated form were applied. Results showed that the concrete cured by the heated cable resulted in the highest temperature history and the highest strength development at 28 days. Further, it is believed that the curing methods of the heated panel and insulated form are also recommendable for the resistance of the early frost damage on the concrete in practice.

  • PDF

Early Strength Development of Concrete Cured with Microwave Heating Form (마이크로웨이브 발열거푸집을 적용한 콘크리트의 조기강도 발현특성)

  • Koh, Tae Hoon;Hwang, Seon Keun;Moon, Do Young;Yoo, Jung Hoon;Song, Jin Woo;Ko, Ji Soo
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.365-372
    • /
    • 2014
  • Technologies for rapid concrete curing using elevated temperature are important for saving cost and time when constricting concrete structures. Recently, a microwave heating form was developed. In this study the early strength of concrete cured by the developed form was experimentally investigated. Large scale mock up tests were conducted six times, and the results were analyzed based on the maturity theory. Logarithmic correlation curves were generated based on the measured strength and estimated maturity. It was confirmed that the strength development of the concrete cured by microwave heating form can be estimated by the equivalent age theory usually applied to steam-curing technology. By using the microwave heating form, one day at most is enough to get the required strength for the safe removal of forms, even in cold weather.

Determination of Proper Application Rate of Curing Compound for Cement Concrete Pavement (콘크리트 포장 양생제의 적정살포량 결정 연구)

  • Kim, Jang-Rak;Suh, Young-Chan;Ahn, Sung-Soon
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.45-55
    • /
    • 2005
  • It is known that the Q/C(Quality Control) in the early age of portland cement concrete(PCC) pavement gives a huge effect on long term pavement performance. Thus, many studies regarding the construction of PCC pavement have focused on how to assure construction quality at the early age stage. Curing is one of the most important factor in Q/C of PCC pavement. Membrane curing that protects the evaporation of moisture by placing an impermeable layer on the slab surface is the most common practice for curing the PCC pavement. In order to improve the membrane curing practice, the rate of curing compound should be optimized. However, the optimum rate of curing compound considering Korean weather and environmental conditions has not been specified in the pavement construction specifications. In this study, a proper application rate was recommended in terms of minimizing evaporation with several full-scale tests where various rates of curing compound have been applied. Four test sites on the expressway were enlisted during the summer of 2002 and 2003. Application rates tested were in the range of $0. The rate of evaporation, the temperature pattern of the slab and the pulse velocity of concrete surface have been monitored at each test construction. The result from this study showed that the rate of current construction was approximately $160ml/m^2$ and that approximately $400ml/m^2$ of curing application was recommended as the proper rate for minimizing the moisture evaporation.

  • PDF

Compressive Strength Properties of Steam-cured High Volume GGBFS Cement Concrete (증기양생한 고로슬래그 다량치환 시멘트 콘크리트의 압축강도 특성)

  • Hong, Seong-Hyun;Kim, Hyung-Suk;Choi, Seul-Woo;Lee, Kwang-Myong;Choi, Se-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Recently, lots of researches on concrete with high volume mineral admixture such as ground granulated blast furnace slag (GGBFS) have been carried out to reduce $CO_2$. It is known that the precast concrete has an advantage of high strength at early age due to steam curing, even if concrete has high replacement level of mineral admixture. However it demands the investigation of compressive strength properties according to steam curing regimens. In this study, concretes with water-binder ratio of 32, 35% and water content of 135, 150, $165kg/m^3$ were produced to investigate compressive strength properties of high volume (60% by mass) GGBFS cement concrete according to steam curing regimens. Then steam curing was implemented with the maximum temperature of 50, $60^{\circ}C$ and steaming time of 5, 6, 7 hours. From the test results, it was found that steam curing was effective to raise early strength of high volume GGBFS cement concrete, but 28 day compressive strengths of steam cured specimens were lower than those of water cured specimens. Thus, a further study would be needed for the optimum steam curing regimens to satisfy target demolded strength and specified strength for the application of high volume GGBFS cement concrete to precast concrete members.