DOI QR코드

DOI QR Code

Evaluation on Workability and Compressive Strength Development of Concrete Using Modified Fly-Ash by Vibration Grinding

진동분쇄를 사용한 개질 플라이애시 콘크리트의 유동성 및 압축강도 발현 평가

  • 안태호 (경기대학교 일반대학원 건축공학과) ;
  • 양근혁 (경기대학교 건축공학과) ;
  • 전용수 (삼표피앤씨(주))
  • Received : 2021.02.10
  • Accepted : 2021.03.26
  • Published : 2021.03.30

Abstract

The objective of this study is to evaluate the practical application potential and limitations of the modified fly ash(MFA) by vibration grinding as a partial replacement of ordinary portland cement(OPC). The test parameters investigated were the replacement level of fly ash(FA) and FA for OPC, varying from 10% to 40%, and curing temperatures of 5, 20, and 40℃. The various characteristics(including slump, air content, bleeding, setting time, compressive strength development, and hydration products) of MFA concrete were measured and then compared with those of the concrete with conventional FA. Test resul ts showed that the MFA prefers to FA in reducing the bl eeding of fresh concrete and enhancing the compressive strength gain at an early age. The compressive strength ratios between MFA and FA concrete specimens at an age of 1 day were 135%, 146%, and 111% at the curing temperatures of 5, 20, and 40℃, respectively. The corresponding ratios at an age of 28 days were approximately 110%, regardless of the curing temperatures. The X-ray diffraction analysis also revealed less calcium hydroxide products in MFA pastes than in FA pastes.

본 연구의 목적은 보통 포틀랜드 시멘트의 치환재로서 개질 플라이애시의 적용 가능성을 평가하는 것이다. 실험변수는 시멘트 대비 플라이애시와 개질 플라이애시의 치환율 10%, 20%, 30% 및 40%와 양생온도 5, 20 및 40℃이다. 개질 플라이애시를 혼입한 콘크리트의 굳지 않은 콘크리트 특성(유동성, 공기량, 블리딩, 응결특성), 역학적 특성(압축강도) 및 수화생성물을 측정하고 일반 플라이애시 혼입 콘크리트와 비교하였다. 실험결과, 개질 플라이애시는 일반 플라이애시보다 콘크리트의 블리딩량 감소 및 조기 압축강도 향상에 유리하였다. 일반 플라이애시를 이용한 콘크리트의 압축강도 대비 개질 플라이애시 콘크리트의 압축강도 증가율은 재령 1일에서 양생온도 5℃인 경우 평균 128%, 양생온도 20℃인 경우 약 153%, 양생온도 40℃에서는 약 113%이었다. 이들 증가율은 재령 28일에서는 양생온도에 관계없이 약 108% 수준이었다. X선 회전 분석결과, 개질 플라이애시 페이스트에서 측정된 수산화칼슘 생성양은 플라이애시 페이스트에서 보다 적었다.

Keywords

References

  1. Cho, H.B. (2011). Prediction Model of Cementing Efficiency for Strength Estimation of Concrete Containing Fly Ash, Ph.D Thesis, Hanyang University, Korea [in Korean].
  2. Han, F., Wang, Q., Feng, J. (2015). The differences among the roles of ground fly ash in the paste, mortar and concrete, Construction and Building Materials, 93, 172-179. https://doi.org/10.1016/j.conbuildmat.2015.05.117
  3. Helmuth, R. (1987). Fly Ash in Cement and Concrete, Portland Cement Association, Skokie, Illinois, 101-123.
  4. Hwang, I.S. (2003). A Study on the Properties of Bleeding and Development of Bleeding Reduction Agent for Concrete, Ph.D Thesis, Cheongju University, Korea [in Korean].
  5. KCI. (2017). KCI Model Code Korea Concrete Institute(KCI), Korea [in Korean].
  6. Kokubu, M. (1969). "Fly ash and fly ash cement," Proceedings of the 5th International Symposium on the Chemistry of Cement, Tokyo, Japan.
  7. Krishnaraj, L., Ravichandran, P.T. (2019). Investigation on grinding impact of fly ash particles and its characterization analysis in cement mortar composites, Ain Shams Engineering Journal, 10(2), 267-274. https://doi.org/10.1016/j.asej.2019.02.001
  8. KS F 2402. (2017). Standard Test Method for Concrete Slump. Korea Standard Association, Korea [in Korean].
  9. KS F 2403. (2019). Standard Test Method for Making and Curing Concrete Specimens, Korea Standard Association, Korea [in Korean].
  10. KS F 2405. (2017). Standard Test Method for Compressive Strength of Concrete, Korea Standard Association, Korea [in Korean].
  11. KS F 2414. (2020). Standard Test Method for Bleeding of Concrete, Korea Standard Association, Korea [in Korean].
  12. KS F 2421. (2016). Standard Test Method for Air Content of Fresh Concrete by the Pressure Method(Air Receiver Method), Korea Standard Association, Korea [in Korean].
  13. KS F 2436. (2017). Standard Test Method for Setting Times of Concrete Mixture by Penetration Resistance, Korea Standard Association, Korea [in Korean].
  14. Lee, S.S., Song, H.Y., Lee, S.M. (2009). An experimental study on the influence of high fineness fly ash and water-binder ratio on properties of concrete, Korea Concrete Institute, 21(1), 29-35 [in Korean]. https://doi.org/10.4334/JKCI.2009.21.1.029
  15. Nguyen, T.C., Tran, T.D.M., Dao, V.B., Vu, Q.T., Nguyen, T.D., Thai, H. (2020) Using modified fly ash for removal of heavy metal ions from aqueous solution, Journal of Chemistry, 2020(9), 1-11.
  16. Oh, S.G. (2011). An evaluation of chloride attack resistibility of concrete mixed with fly ash, Journal of the Architectural Institute of Korea: Structure & Construction, 31(4), 79-86 [in Korean].
  17. Rajak, D.K., Raj, A., Guria, C., Pathak, A.K. (2017). Grinding of class-F fly ash using planetary ball mill: a simulation study to determine the breakage kinetics by direct- and back-calculation method, South African Journal of Chemical Engineering, 24, 135-147. https://doi.org/10.1016/j.sajce.2017.08.002
  18. Ravina, D., Methta, P.K. (1986). Properties of fresh concrete containing large amount of fly ash, Cement and Concrete Research, 16, 227-238 https://doi.org/10.1016/0008-8846(86)90139-0
  19. Ryu, G.S. (2012). A Characteristics Study of Fly Ash-based Cement Zero Concrete, Ph.D Thesis, Chung-Ang University, Korea [in Korean].
  20. Sahoo, P.K., Tripathy, S., Panigrahi, M.K., Equeenuddin, S.D. (2013). Evaluation of the use of an alkali modified fly ash as a potential adsorbent for the removal of metals from acid mine drainage, Applied Water Science, 3(3), 567-576. https://doi.org/10.1007/s13201-013-0113-2