• Title/Summary/Keyword: 양분흡수

Search Result 379, Processing Time 0.027 seconds

Nutrient Transfer in the Application of the Swine Slurry Liquid Fertilizer in Rice Paddy (벼 재배에서 양돈분뇨 액비 시용시 양분이동)

  • Kwon, Soon-Ik;Kim, Kwon-Rae;Kim, Min-Kyeong;Jung, Goo-Bok;Hong, Seung-Gil;Shin, Joong-Du;Park, Woo-Kyun;Seong, Ki-Seog;Lee, Deog-Bae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.4
    • /
    • pp.77-85
    • /
    • 2010
  • Pig slurry has been considered as environmental waste to be treated in an appropriate manner. Recently, there has been the movement toward reusing the pig slurry as an alternative fertilizer sources for agricultural lands. For instance, SCB(Slurry Composting & Biofiltration) liquid fertilizer has been developed and widely used in Korea. However, the impacts of swine slurry liquid fertilizers on both agricultural environment and crop yield have not been investigated yet. Therefore, the current study was conducted to accumulate the basic data which can be subsequently used to determine appropriate application amount of swine slurry liquid fertilizers (SCB liquid fertilizer and storage liquid fertilizer) as well as the application method for each liquid fertilizer. For this, growth of rice was cultivated under the treatment of SCB liquid fertilizer, storage liquid fertilizer, and chemical fertilizer. Also, control treatment (no fertilizer) was included for comparison and all treatments were conducted in five replication. Rice growth was good with the treatment in the order of chemical fertilizer>storage liquid fertilizer>SCB liquid fertilizer>control and likewise, the yield amount of rice straw was in the same order of rice growth. The rice yield amount appeared to be no difference among the treatment except control which showed the least yield amount. Also there was no difference in nitrogen and phosphorus concentrations in rice among the treatment except control which showed the least concentration.

Influence of Percolation Rate on Nutrient Uptake and Yield of Paddy Rice (투수속도(透水速度)가 수도(水稻)의 양분흡수(養分吸收) 및 수량(收量)에 미치는 영향(影響))

  • Shin, Weon-Kyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.218-223
    • /
    • 1984
  • In order to analyze the effects of percolation rate on the growth and yield of rice plants in paddy soils, pot (1a/2000) experiments were carried out. The soil used was highly concentrated with various salts in the horticulture area under vinyl house cultivation, and Samgang variety of Japanica rice was planted. With the increasing rates of percolation, $SiO_2$ and $Ca^{2+}$ were more leached out from soils than supplied by irrigation while $K^+$ and $NH_4{^+}$ were more supplied to soils than leached out. The root activity in the late growth stage was higher in the percolation pots than in the non-percolation pots. Amounts of nutrient uptake of T-N, $P_2O_5$, $K_2O$ and MgO were increased gradually with the increase of percolation rate, but that of $SiO_2$ was maximum at 10mm per day. The percolation rate of 5~10mm per day was considered to be the optimum condition for obtaining more than 95% of relative yield in rice cultivation.

  • PDF

Effect of Liquid Fertilizer Contained Medium of Lactobacillus sp. and Saccharomyces sp. on Growth of Creeping Bentgrass (유산균과 효모균 배양액 함유 액비 시용이 크리핑 벤트그래스의 생육에 미치는 영향)

  • Kim, Young-Sun;Ham, Suon-Kyu;Lee, Sang-Jin
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.2
    • /
    • pp.138-144
    • /
    • 2010
  • This study was conducted to investigate the effect of Lactobacillus sp. and Saccharomyces sp. on turf quality, shoot and root growth of creeping betgrass in golf course by measuring turf color index, chlorophyll content, dry weight of shoot and root, T/R ratio and root length. Fertilizer treatment was designed as follows; nonfertilizer (NF), control (CF; compound fertilizer), microorganism medium(MO; CF+MO)), microorganism medium contained Fe(MO-Fe; CF+MO-Fe) and microorganisum medium contained S (MO-S; CF+MO-S). Soil properties investigated after experiment was scarcely affected by applied fertilizers in root zone of creeping bentgrass. The turf color index and chlorophyll index of MO, MO-Fe, MO-S treatment were higher than those of NF, and similar to those of CF. The turfgrass root in MO and MO-Fe treatment was longer than others. The dry weight of shoot in MO and MO-S was higher than CF and that of root in MO and MO-Fe, and dry weight of MO was increased than that of NF and CF, by 26% and 6%, respectively. AS compared with NF, T/R ratio of CF, MO, MO-Fe and MO-S was increased, and MO and MO-Fe was similar to CF, MO-S higher. Nutrient content in CF, MO, MO-Fe and MO-S was contained more than in NF, and it was higher in shoot. These was suggested that application of MO induced the development of quality and growth of creeping bentgrass by assisting root growth and nutrients uptake.

Effect of Subsurface Drip Pipes Spacing on the Yield of Lettuce, Irrigation Efficiency, and Soil Chemical Properties in Greenhouse Cultivation (지중 점적관수 호스 설치 간격이 상추 수량, 관수량 및 토양 화학성에 미치는 영향)

  • Park, Jin Myeon;Lim, Tae Jun;Lee, Seong Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.683-689
    • /
    • 2012
  • This research was carried out to investigate the effect of installation spacing of subsurface drip irrigation pipe on the mineral content, nutrient uptake, yield of lettuce, water requirement for irrigation, and soil chemical properties in greenhouse cultivation. Semi-forcing and retarding culture were implemented in this experiment, with four treatments containing overhead spray irrigation and three subsurface irrigation lateral spacing intervals of 30, 40, 50 cm at a depth of 30 cm from soil surface, respectively. Each mineral content of lettuce grown under subirrigation system did not show significant difference between treatments, however the uptake of nutrients was lower at 50 cm-distance. The yield was largest in 30 cm-subirrigation (SI), followed by 40 cm-SI, overhead spray, and 50 cm-treatment. Water requirement for irrigation was highest in overhead spray, and it was in reverse proportion to the distance of irrigation pipes. $NO_3$-N content in the soil, at a depth of 10 cm, showed a higher value in 50 cm-SI, followed by 40 cm-SI, overhead spray and 30 cm-SI. Exchangeable K content was highest in 50 cm-SI, Mg was highest in 40 cm-SI, and Ca was lowest in 30 cm-SI. In conclusion, the lettuce yield was not different between 30 and 40 cm-SI, but water requirement for irrigation was lower as the distance of irrigation pipes was further. And it seems to be needed more precise research on this theme, because crop yield and the dynamics of soil minerals in subsurface irrigation can vary with the depth and distance of irrigation pipes, dripper, water flow depending on the soil texture, and plant response to soil minerals.

Optimization of the Inoculation Dose of Plant-Growth Promoting Bacteria Azospirillum brasilense Strain CW903 Assessed by Tomato, Red Pepper and Rice under Greenhouse Condition (온실조건에서 토마토, 고추, 벼를 이용한 식물생장촉진 미생물 Azospirillum brasilense CW903 접종의 최적 조건 평가)

  • Madhaiyan, Munusamy;Poonguzhali, Selvaraj;Yim, Woo-Jong;Kim, Kyoung-A;Kang, Bo-Goo;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.249-254
    • /
    • 2007
  • Inoculation dose of agriculturally important microbes is an important criterion that decides the establishment and hence their effects on plant growth. Effects of the inoculation dose of Azospirillum brasilense strain CW903 on the growth and nutrient absorption of three different crops, tomato, rice and red pepper were assessed under green house condition. Three different concentrations of A. brasilense strain CW903 ($10^5$, $10^6$ and $10^8cfu\;mL^{-1}$) were applied through seed treatment and through the soil near the root zone (1 mL per plant) at 20 and 30 days after sowing. Positive effects on the growth of tomato, rice and red pepper were found at $10^6$ and $10^8cfu\;mL^{-1}$ inoculation doses of A. brasilense strain CW903. The inoculation dose of $10^8cfu\;mL^{-1}$ of A. brasilense strain CW903 recorded the best effects on growth parameters like shoot and root length and the absorption of important nutrients.

The Growth Effects of Creeping Bentgrass by SCB(Slurry Composting and Biofilteration) Liquid Fertilizer application (SCB 저농도액비의 시용이 크리핑벤트그래스의 생육에 미치는 영향)

  • Ham, Suon-Kyu;Kim, Young-Sun;Park, Chi-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.1
    • /
    • pp.56-61
    • /
    • 2010
  • This study was conducted to evaluate the effect of application of SCB liquid fertilizer produced after slurry composting and biofiltration (SCB) on turfgrass growth in golf course during 6 month period from May to October in 2008. The change of soil properties by applying CF and SCB was unaffected respective treatments. As compared with NF, turf color index of CF, S-1 and S-2 increased by 1.8%, 2.5%, and 3.4%, respectively and chlorophyll content by 13%, 19%, and 25%, respectively. Dry weight of S-1 and S-2 was increased by 15% and 26% than that of CF. As compared with CF, N uptake rate in S-1 and S-2 was increased by 21% and 37%, P uptake rate 57% and 28%, and K uptake rate 16% and 27%, respectively. S-2 showed the best effect for turf color index, chlorophyll content, dry weigh and nutrient uptake rate in creeping bentgrass. These results suggested that an mixed application of SCB and compound fertilizer was improved turf quality and growth of creeping bentgrass by increasing nutrient uptake rate of turfgrass.

Effect of Amount of Oil Cake Applications on Mineral Nutrient Partitioning of Black Chokeberry (유박시용량에 따른 유기 블랙초크베리의 수체 내 무기성분 분배에 미치는 영향)

  • Choi, Hyun-Sug;Jung, Seok-Kyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.1
    • /
    • pp.5-14
    • /
    • 2020
  • The study was initiated to reduce production cost and environmental pollution with the evaluation of nutrient requirement of 'Nero' black chokeberry (Aronia melanocarpa) and optimum amount of oil cake application. 100% of a recommended amount (RA) of oil cake was designated as a 100-RA, with 0-RA, 25-RA, 50-RA, and 75-RA for 0%, 25%, 50%, and 75% RA, respectively. The oil cake was scattered around the black chokeberry at every year for two years from 2018 to 2019, with investigation conducted for the second year. Soil mineral nutrient concentrations were not significantly different among the treatments. Dry weight (DW) of root and leaves was low for 0-RA-treated black chokeberry, with no significant difference observed for the all treatments for the DW of stems. 75-RA increased the fruit DW of 615 g and yield efficiency of 45.3%. Top:root ratio was the highest of 4.7 for 75-RA. Increased amount of oil cake application expanded the tree volume. Tree volume had a strong positive relationship with the root DW (r2=0.977). Mineral nutrient uptake in the root was the highest on the 25-RA-treated black chokeberry, except for Fe uptake. Mineral nutrient uptake in the leaves were similar to all the black chokeberries, except for T-N and Fe uptake. 75-RA increased mineral nutrient uptake in the fruit, except for Cu, in particular, 7.45 g in fruit N, which was the highest level compared to those of the other organs. T-N and P uptake were evenly distributed in the leaves, stems, and fruit, with high K uptake for leaves and fruit. 75-RA maximized to 17.2 g of the total nutrient uptake in a black chokeberry, with 4.9 g for the 0-RA. All mineral nutrient uptake were overall higher on the black chokeberry treated with 50-RA, 75-RA, and 100-RA compared to those of 0-RA and 25-RA.

Influence of Soil Texture and Bulk Density on Root Growth Characteristics and Nutrient Influx Rate of Soybean Plant (토성(土性)과 용적밀도(容積密度)가 대두(大豆)의 뿌리 생장특성(生長特性)과 양분흡수기능(養分吸收機能)에 미치는 영향(影響))

  • Jung, Yeong-Sang;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.221-227
    • /
    • 1989
  • This study was conducted to understand the influence of soil compaction on root growth and nutrient uptake characteristics of the soybean roots grown in two soils with different texture. Tap root elongation was measured on young seedling grown in cores compacted to different bulk densities of 1.2, 1.4 and $1.6/cm^3$ with different soil water retention in laboratory. The soil used were Samgag sandy loam and Baegsan loam soils. The wet and dry weight, total length, average radius and total surface area of roots were measured on soybean plants grown in 1/5000 a Wagner pots compacted to different bulk density of 1.2 and $1.4g/cm^3$. The nutrient uptake of soybean shoot was measured and evaluated with the unit surface area of roots at the 7th, 17th and 27th days after germination. The results were as follows: 1. The tap root elongation rate was faster in the loam soil with low bulk density than in the sandy loam soil with high bulk density. The elongation rates were remarkedly decreased when soil water was lower than the retention of 4 bars in loam soil and that of 1 bars in sandy loam soil. 2. Tap root elongation rate sharply decreased as increased soil strength higher than $2kgf/cm^2$ measured by ELE penetrometer showing curvillinear regression. However, it was low regardless of soil strength when soil water retention was 10 bars in sandy loam soil. 3. From the pot experiment, the total length of roots were longer in loam soil than in sandy loam soil and was longer in the soils with lower bulk density. The average radius of fine roots grown in sandy loam soil was larger than that grown in loam soil. The total surface area of roots was greater in the loam soil with low bulk density than in the sandy loam soil with high bulk density as the total length of roots. 4. The amounts of nutrient uptake by soybean shoots were greater in loam soil primarily due to more production of dry matter than in sandy loam soil. The nitrogen influx rates through the unit surface area were 597 to $753nmoles/day-cm^2$ in loam soil and 222 to $365nmoles/day\;cm^2$ in sandy loam soilshowing higher value in higher bulk density. The potasium influx rates were 99 to $175nmoles/day-cm^2$, and those of phosphate were 26 to $46nmoles/day\;cm^2$. Those of Ca and Mg were 175 to 246 and 163 to $205nmoles/day\;cm^2$. The difference in nutrient influx rates between bulk densities of these elements were lower than that of nitrogen.

  • PDF