DOI QR코드

DOI QR Code

Effect of Amount of Oil Cake Applications on Mineral Nutrient Partitioning of Black Chokeberry

유박시용량에 따른 유기 블랙초크베리의 수체 내 무기성분 분배에 미치는 영향

  • Received : 2019.11.12
  • Accepted : 2019.12.05
  • Published : 2020.03.30

Abstract

The study was initiated to reduce production cost and environmental pollution with the evaluation of nutrient requirement of 'Nero' black chokeberry (Aronia melanocarpa) and optimum amount of oil cake application. 100% of a recommended amount (RA) of oil cake was designated as a 100-RA, with 0-RA, 25-RA, 50-RA, and 75-RA for 0%, 25%, 50%, and 75% RA, respectively. The oil cake was scattered around the black chokeberry at every year for two years from 2018 to 2019, with investigation conducted for the second year. Soil mineral nutrient concentrations were not significantly different among the treatments. Dry weight (DW) of root and leaves was low for 0-RA-treated black chokeberry, with no significant difference observed for the all treatments for the DW of stems. 75-RA increased the fruit DW of 615 g and yield efficiency of 45.3%. Top:root ratio was the highest of 4.7 for 75-RA. Increased amount of oil cake application expanded the tree volume. Tree volume had a strong positive relationship with the root DW (r2=0.977). Mineral nutrient uptake in the root was the highest on the 25-RA-treated black chokeberry, except for Fe uptake. Mineral nutrient uptake in the leaves were similar to all the black chokeberries, except for T-N and Fe uptake. 75-RA increased mineral nutrient uptake in the fruit, except for Cu, in particular, 7.45 g in fruit N, which was the highest level compared to those of the other organs. T-N and P uptake were evenly distributed in the leaves, stems, and fruit, with high K uptake for leaves and fruit. 75-RA maximized to 17.2 g of the total nutrient uptake in a black chokeberry, with 4.9 g for the 0-RA. All mineral nutrient uptake were overall higher on the black chokeberry treated with 50-RA, 75-RA, and 100-RA compared to those of 0-RA and 25-RA.

본 실험은 유박 시용량에 따른 '네로' 블랙초크베리(Aronia melanocarpa)의 양분 요구도를 파악하여 적절한 양분시용량을 구명함으로서 생산비 절감 및 환경오염을 줄이고자 수행되었다. 100% 유박시용을 기준으로 0%(무처리), 25%, 50%, 75%로 분류하여 2년간(2018~2019년) 수체 주위에 매년 전량 산포처리 하였고 실험 조사는 2년차에 수행하였다. 토양 무기성분 농도는 처리구에 상관없이 차이가 없었다. 뿌리와 잎의 건물중은 0% 유박 처리에서 낮게 나타났고 줄기 건물중은 처리 간에 차이가 없었다. 75% 유박 처리에서 과실 건물중이 615 g으로 가장 크게 증가하였고 수량이용효율도 45.3%로 가장 높았다. 지상부:지하부 비율은 75% 처리에서 4.7로 가장 높았다. 유박시용량이 증가할수록 수관용적은 확대되었다. 수관용적은 뿌리 건물중과 유의성 있는 정의 상관관계가 관찰되었다(r2=0.977). 뿌리의 무기성분 흡수량은 철을 제외하고는 25% 유박처리구에서 가장 높았다. 잎은 무처리구에서 전질소와 철의 흡수량이 낮았고 기타 무기성분 흡수량은 유박처리구와 비슷한 수준이었다. 줄기 내 무기성분 흡수량은 50% 처리구에서 철을 제외하고 가장 높았다. 과실 내 무기성분 흡수량은 75% 처리구에서 구리를 제외하고 가장 높았고 특히 전질소 흡수량이 7.45 g으로 다른 기관 대비 가장 높았다. 전질소와 인산흡수량은 잎과 줄기 및 과실에 균일하였고 칼륨은 잎과 과실에 많이 분포하였다. 뿌리, 잎, 줄기, 과실을 합한 작물의 무기성분 총량에서 전질소는 75% 처리구에서 17.2 g으로 가장 높았고 무처리구에서 4.9 g으로 가장 낮았다. 작물체 내 기타 무기성분 흡수량은 50%, 75%, 100% 유박 처리구에서 대체적으로 높은 수준이 관찰되었다.

Keywords

References

  1. Brand, M., "Aronia: native shrubs with untapped potential", Arnoldia, 67, pp. 14-25. (2010).
  2. Kokotkiewicz, A., Jaremicz, Z. and Luczkiewicz, M., "Aronia plants: a review of traditional use, biological activities, and perspectives for modern medicine", J. Med. Food, 13, pp. 255-269. (2010). https://doi.org/10.1089/jmf.2009.0062
  3. Denev, P. N., Kratchanov, C. G., Ciz, M., Lojek, A. and Kratchanova, M. G., "Bioavailability and antioxidant activity of black chokeberry (Aronia melanocarpa) polyphenols: in vitro and in vivo evidences and possible mechanisms of action: a review", Compr. Rev. Food Sci., 11, pp. 471-489. (2012). https://doi.org/10.1111/j.1541-4337.2012.00198.x
  4. Kulling, S. E. and Rawel, H. M., "Chokeberry (Aronia melanocarpa)-a review on the characteristic components and potential health effects", Plant Med., 74, pp. 1625-1634. (2008). https://doi.org/10.1055/s-0028-1088306
  5. Jeppsson, N., "The effects of fertilizer rate on vegetative growth, yield and fruit quality, with special respect to pigments, in black chokeberry (Aronia melanocarpa) cv. 'Viking'", Scientia Hortic., 83, pp. 127-137. (2000). https://doi.org/10.1016/S0304-4238(99)00070-9
  6. RDA, "Aronia", RDA Press, Suwon. Korea, pp. 1-50. (2015).
  7. Eck, P., "Relationship of nitrogen nutrition of 'Early black' cranberry to vegetative growth, fruit yield and quality", J. Amer. Soc. Hort. Sci., 101, pp. 375-377. (1976).
  8. Kim, B. S., Pagay, V., Cho, K. C., Na, Y. G., Yun, B. K., Choi, K. J., Jung, S. K. and Choi, H. S., "Effect of oil cake application on soil and leaf nutrition and on fruit yields in non-astringent persimmon (Diospyros ${\times}$ kaki Thunb.) trees", J. Hort. Sci. Biotechnol., 90, pp. 203-209. (2015). https://doi.org/10.1080/14620316.2015.11513173
  9. Tagliavini, M., Scudellari, D., Marangoni, B. and Toselli, M., "Mineral nutrient partitioning to fruits of deciduous trees", Acta Hortic., 512, pp. 131-140. (2000). https://doi.org/10.17660/actahortic.2000.512.13
  10. Cannell, M. G. R., "Dry matter partitioning in tree crops In: Cannell, M. G. R. and J. E. Jackson. (eds.). Attributes of trees as crop plants", Institute of terrestrial ecology, Abbots Ripton, England, pp. 160-193. (1985).
  11. Ferree, D. C. and Warrington, I. J., "Apples. Botany, production and uses", CABI Publishing, London, UK, pp. 1-660. (2003).
  12. Conradie, W. J., "Seasonal uptake of nutrients of Chenin Blanc in sand culture II. Phosphorous, potassium, calcium and magnesium", S. Afr. J. Environ. Vitic. 40, pp. 7-13. (1981).
  13. KMA, "Statistical analysis of climate", Korea Meteorological Administration, KMA. (2019).
  14. RDA, "Standard analysis method of soil and plant", RDA Press, Suwon. Korea, pp. 1-838. (2003).
  15. Faust, M., "Physiology of temperate zone fruit trees", A Wiley & Son, Inc., New York, USA. 338 p. (1989).
  16. Zhu, S., Vivanco, J. M. and Manter, D. K., "Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize", Appl. Soil Ecol., 107, pp. 324-333. (2016). https://doi.org/10.1016/j.apsoil.2016.07.009
  17. Kwack, Y. B., Cahe, W. B., Lee, M. H., Jeong, H. W., Rhee, H. C., Kim, J. G. and Kim, H. L., "Effect of nitrogen fertigation on the growth and nutrition uptake of 'Brightwell' rabbiteye blueberry", Kor. J. Environ. Agric., 36, pp. 161-168. (2017). https://doi.org/10.5338/KJEA.2017.36.3.28
  18. Vargas, O. L. and Bryla, D. R., "Growth and fruit production of highbush blueberry fertilized with ammonium sulfate and urea applied by fertigation or as grannular fertilizer", HortScience, 50, pp. 479-495. (2015). https://doi.org/10.21273/HORTSCI.50.3.479
  19. Chiraz, M. C., "Growth of young olive trees: water requirements in relation to canopy and root development", Am. J. Plant Sci., 4, pp. 1316-1344. (2013). https://doi.org/10.4236/ajps.2013.47163
  20. Jung, S. M., Chang, E. H., Kim, J. G., Park, S. J., Nam J. C., Roh, J. H., Hur, Y. Y. and Park, K. S., "Nutrient distribution and requirements of Jinok, Hongisul grapevine bred in Korea", J. Bio-Environ. Control, 21, pp. 327-335. (2012). https://doi.org/10.12791/KSBEC.2012.21.4.327