• 제목/요약/키워드: 액체추진시스템

Search Result 303, Processing Time 0.02 seconds

Ignition and Extinction Characteristics of a Low Thrust Combustion Chamber using Green Propellant according to Sequence of the Combustion Test (친환경 추진제를 사용하는 저추력 액체로켓엔진의 연소시험 시퀀스에 따른 점화 및 소염 특성)

  • Kim, Young-Mun;Jeon, Jun-Su;Choi, Yu-Ri;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.130-133
    • /
    • 2009
  • The sequence of the propellant supply is very important for the reliable and safe operation of a LRE combustion test. So combustion performance tests were performed to find an optimum test sequence by changing supply time of propellants and purge gas in the moment of ignition and extinction. The liquid rocket engine consisted of a catalytic ignitor and six swirl-coaxial injectors which used hydrogen peroxide and kerosene. Conclusively, an optimum sequence was found for stable combustion in the moment of ignition and extinction.

  • PDF

Infrastructure of Propulsion Test Facility of Liquid Rocket (액체로켓 추진기관 시험설비 기반시설 고찰)

  • Cho, Namkyung;Kim, Sunghyuk;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.87-94
    • /
    • 2019
  • Liquid rocket propulsion test facility should provide for the interface condition installed on the upper level system for the test article. In addition, safety provision should be provided to be ready for accident such as explosion which can be occurred during development stage. For this purpose infra-structures of test facilities must be constructed so that stable combustion test can be performed and be guard against accidents. In this article, various aspects for infrastructures of propulsion test facilities are investigated including architecture and civil engineering aspects, test stand, room arrangements, interfaces among facilities, fire-fighting facilities, electrical power facilities.

Pipe Network Analysis for Liquid Rocket Engine with Gas-generator Cycle (액체로켓엔진 가스발생기 사이클의 배관망 해석)

  • Lim, Tae-Kyu;Lee, Sang-Bok;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.52-57
    • /
    • 2012
  • A liquid rocket system consists of a combustion chamber, a gas generator, a turbo pump, and a turbine, etc. Each component is connected by supply components such as valves, pipes, and orifices. Since each component has a combined effect on engine performance, preliminary analysis for overall system must be required before the conceptual design stage. Comprehensive analysis program considered the supply system has not been developed yet. In this paper, a supply component model of the liquid rocket engine has been designed after verification of each component. The gas generator cycle with supply components has been composed. The results of the cycle has been compared to those of the F-1 engine with the representative gas generator cycle.

  • PDF

Chung-nam National University's Status of Research on Technology of the Next Generation Rocket Engine System (충남대학교 차세대 로켓엔진 시스템 기술 연구 현황)

  • Jang, Jee-Hun;Jeon, Jun-Su;Kim, Tae-Woan;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.196-200
    • /
    • 2012
  • To acquire indigenous development abilities of a future space launcher, bi-propellant liquid rocket engines using environmentally clean propellants such as hydrogen peroxide and methane have been developed by Chungnam national university. The necessary development technologies for the future liquid rocket engines were defined and have been acquired step-by-step in advance by sub-scale liquid rocket engines. Core techniques of design/manufacture/experiments to develop a future prototype liquid rocket engine will be obtained by this study.

  • PDF

Thruster system for attitude control of launch vehicles (발사체 자세 제어용 추력기 시스템)

  • Shin, Dong-Sun;Han, Sang-Yeop;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.7-10
    • /
    • 2006
  • In order to inject satellites into a target orbit, launch vehicles should have a precise attitude and control system capable of controlling three axises of pitch, yaw and roll. For launch vehicles, there are two types of attitude control system currently in popular use; the first one is a cold gas method, and the other is a liquid propulsion system using a single and dual property propellant. The purpose of this paper is to analyze the characteristics of thrust control system using said propellant, thereby providing for a rationale for its application to the upper stages of launch vehicles, in terms of the simplicity of the system, economics of structure and operation.

  • PDF

Determination of Liquid Rocket Engine System Test Range Considering Performance Dispersions (성능 분산을 고려한 액체로켓엔진의 시스템 시험 영역 설정)

  • Nam, Chang-Ho;Kim, Seung-Han;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.165-169
    • /
    • 2007
  • Qualification test range for Lox/Kerosene gas generator cyle liquid rocket engine was determined by considering engine dispersion and flight inlet conditions. With various pump characteristics, the operation range of components and system was investigated through dispersion analysis. The variation of engine performance shows opposite trends in calibration and dispersion.

  • PDF

Transient Simulator for the Turbopump Pressurized Liquid Rocket-Engine System (터보펌프 가압형 액체 추진제 로켓엔진의 천이성능 예측 모델)

  • Ko, Tae-Ho;Kim, Sang-Min;Yang, Hee-Sung;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.35-38
    • /
    • 2007
  • Aiming at time-dependent performance prediction of Liquid Rocket Engine(LRE) system, Modular Program for Conceptual Design of LRE is reviewed, and a modeling and dynamic analysis of rocket engine system with reference to Rocket Engine Dynamic Simulator(REDS) is outlined. Component modeling is based on classical thermodynamic and inviscid theories, and were formulated mathematically in terms of essential parameters. Essential design parameters are addressed. The rocket engine is modeled as a system of pipes with various hydraulic elements, and then the operate characteristic of that elements are simulated by solving conservation equation sequentially.

  • PDF

Development of Underwater Rocket Propulsion System for High-speed Cruises (고속 주행을 위한 수중용 로켓추진기관 개발)

  • Kwon, Minchan;Yoo, Youngjoon;Heo, Junyoung;Hwang, Heeseong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.112-118
    • /
    • 2019
  • The development of an underwater rocket propulsion system was described in this paper. Throttle able liquid propellant and hybrid rocket propulsion systems were selected for underwater propulsion. A subscale liquid rocket combustion chamber and it's portable stand were developed and their applicability was examined. 1.5-ton.f and 1.8-ton.f hybrid rockets were developed for underwater applications. The test results indicated that the 18-ton.f hybrid rocket fully complies to the performance and underwater cruise stability requirements; thus, its development was concluded to be successfully complete.

A Study on Method of Decreasing Accident of Propulsion System according do LOX Contamination (액화산소(LOX) 오염으로 인한 추진기관 사고발생 저감방법에 대한 연구)

  • Yu, Byung-Il;Bershadskiy, V.A.;Kim, Sang-Heon;Lee, Jung-Ho;Kim, Yong-Wook;Oh, Seung-Hyub
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.41-46
    • /
    • 2006
  • A study was conducted to investigate the problem caused by the mechanical particles in LOX system during operating and testing propulsion system, especially concentrated on effects of contaminants accumulation and transfer in LOX system. Several methods for system operation decreasing accidents caused by oxidizer Beakage and contaminants accumulation was investigated. These methods can be applied to LOX system and other propellants system in liquid propellants propulsion system.

  • PDF

Research Trends of Spray and Combustion Characteristics Using a Gelled Propellant (젤 추진제의 분무 및 연소특성 연구동향)

  • Hwang, Tae-Jin;Lee, In-Chul;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.96-106
    • /
    • 2011
  • There are many advantages in applying gel propellant to a gel propulsion system. These include higher performances, the energy management of liquid propulsion system, reliable storability and low leakage characteristics. Additionally, gel propulsion system are preferable to the high density impulse of propulsion system. Also, when compared to liquid propellants, the gel propellants acquire greater heat energy. Gel propellants achieve a high specific impulse when metal particles with aluminum and boron are added. With respect to atomization, an inactive process occurs due to the variable viscosity of the metal particles and gelling agents. To improve the defect of atomization and combustion characteristics of gel propellant, a variety of issues related to spray and combustion is introduced here.