• Title/Summary/Keyword: 액체엔진개발

Search Result 322, Processing Time 0.032 seconds

Development of the Velocity Compounded Impulse Turbine for the 75ton Liquid Rocket Engine Application (75톤급 액체로켓엔진 터보펌프용 속도복식 터빈개발)

  • Jeong, Eunh-Wan;Park, Pyun-Goo;Lee, Hang-Gi;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.7-11
    • /
    • 2011
  • A velocity-compounded(VC) turbine for the 75ton turbopump was developed as an improved performance backup for the single-rotor baseline turbine. Curvic coupling was adopted for the power transmission between the rotors and shaft. High temperature torsion test and spin test was performed for the curvic coupling design validation. Aerodynamic performance test revealed that VC turbine can generate 20.5% higher specific power than the baseline turbine.

  • PDF

Design and Validation Test of Rocket Engine Head Generating High Temperature and High Pressure Steam (고온고압 증기 발생장치의 설계 및 예비운용시험)

  • Park, Jinsoo;Yu, Isang;Oh, Junghwa;Ko, Youngsung;Kim, Kyungseok;Shin, Dongsun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.637-642
    • /
    • 2017
  • In this study, cold flow and combustion tests are conducted and analyzed to validate designed rocket engine head generating high temperature/pressure steam. At first, uni-injector was designed and manufactured, and cold flow test was conducted. Through this, differential pressure that can supply designed flow rate was confirmed. Also, Each injector's spray pattern were confirmed by patternator. Based on cold flow test results, we selected injectors among the candidates and arranged them on engine head, and cold flow and propellant spray tests were conducted. Finally, combustion test was carried out to analyze the flow rate, pressure, combustion efficiency. As a result, validation of rocket engine head for the development of the high temperature and high pressure steam generator has been completed.

  • PDF

The Developing Trend of valves for Liquid Rocket Engine (액체로켓엔진용 밸브의 국내외 개발 동향)

  • Lee, Joong-Youp;Jung, Tae-Kyu
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.68-75
    • /
    • 2009
  • Up to date, demands for satellite including communication are increasing. Advanced countries on space technology such as America, Russia, Europe, Japan, China and so on already had secured launch vehicle technology which can insert a large class satellite to proper orbit. The introduction of technologies on the large class launch vehicle including propulsion system is difficult due to the utilization possibility for defensive reason. The acquisition of indigenous technical expertise on the design and manufacture of valves is believed to contribute to the successful local development of valves for propulsion systems and to significant improvement of local technical level of valve design and development. This paper introduces current status of valves developed by other countries as well as valves developed in domestic. The Developed technology of valves may underlie the construction of engine control systems required for the reliable operation of the KSLV-II engine system and propulsion system.

  • PDF

Transient Heat Transfer and Structural Analyses for the Turbopump Turbine of a Liquid Rocket Engine (액체 로켓 터보 펌프 터빈의 천이 열전달 및 구조 해석)

  • Yoo, Jae-Han;Choi, Ji-Hoon;Lee, In;Han, Jae-Hung;Jeon, Seong-Min;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.58-65
    • /
    • 2004
  • Thermal and structural finite element analyses were performed for the turbopump turbine bladed disk model with shroud of a liquid rocket engine. The only 1/80 part model was analyzed which consists of 3D eight node isoparametric solid elements. The applied loading history consists of a startup condition with a thermal spike and a steady state. Heat transfer coefficient on the blade was predicted using the commercial Navier-Stokes solver, Fluent. Transient thermal responses during startup and steady states were calculated using a 3D finite element code developed. Maximum stress and shroud tip displacement under the influence of centrifugal and thermal loading were also determined.

Hot-firing Test of Technology Demonstration Model Gas Generator for 75 ton-class Liquid Rocket Engine (75톤급 가스발생기 기술검증시제의 연소시험)

  • Ahn, Kyu-Bok;Seo, Seong-Hyeon;Kim, Mun-Ki;Lim, Byoung-Jik;Kim, Jong-Gyu;Lee, Kwang-Jin;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.225-228
    • /
    • 2009
  • Hot-firing tests were performed on the gas generator which is a technology development/demonstration model for a 75 ton-class liquid rocket engine. A heat-sink type combustion chamber was used for initial performance examination of the injector and mixing head. This paper explains not only preparation works for hot-firing tests but also the acquired results such as pressure, temperature distribution, and pressure fluctuation.

  • PDF

A Study on Anti-oxidization Coating for Staged Combustion Cycle Rocket Engines (다단연소 사이클 엔진 적용을 위한 내산화 코팅에 관한 연구)

  • Kim, Young-June;Rhee, Byong-ho;Noh, Yong-Oh;Bae, Byung-Hyun;Hyun, Seong-Yoon;Cho, Hwang-Rae;Bang, Jeong-Suk;Byon, Eung-Sun;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.125-131
    • /
    • 2018
  • Some propellants in a liquid rocket engine are burned in the pre-burner of a staged combustion cycle engine, resulting hot gas drives the turbine. The burned gas passing through the turbine is supplied to the combustor at high temperature and pressure. The form of the gas can be fuel rich or oxidizer rich dependent upon the mixture ratio or the engine scheme. When the cycle works at oxidizer-rich condition, the metal pipes composing the engine can be ignited or even exploded by an impact of very a small particle. In this study, we developed the powder combination and processes for an anti-oxidation coating through the analysis of various coating materials.

Methane Engine Combustion Test Facility Construction and Preliminary Tests (메탄엔진 연소시험설비 구축 및 예비 시험들)

  • Kang, Cheolwoong;Hwang, Donghyun;Ahn, Jonghyeon;Lee, Junseo;Lee, Dain;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.89-100
    • /
    • 2021
  • This paper deals with the construction of a combustion test facility and preliminary tests for hot-firing tests of a methane engine. First, the combustion test facility for a 1 kN-class thrust chamber using liquid oxygen/gas methane as propellants was designed and built. Before hot-firing tests, the cold-flow tests of each propellant line and the ignition tests of torch igniter/afterburner were performed to verify propellant supply stability of the combustion test facility, operation of the control and measurement system, and successful ignition. Finally, a preliminary hot-firing test was conducted to measure the combustion efficiency, heat flux, and combustion stability of a thrust chamber prototype. The constructed combustion test facility will be helpfully used for basic research and development of methane engine thrust chambers.

The Outlook of Future Aeropropulsion System (미래 항공기 추진기관의 전망)

  • Lee, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.58-63
    • /
    • 2009
  • The global restriction on pollutant emissions and the soaring of crude oil price are expected to result in the change of future transportation system. Hydrogen is considered to be the leading candidate as an alternative energy source before other new alternative energy sources emerge. Scientists anticipate that hydrogen fuel gas turbine engine and fuel cell will be the power plant of the aircraft in the near future. To realize the aircraft powered by fuel cell system in the future, the technologies such as fuel cell with higher energy density, compressed gas or liquid storage system of hydrogen fuel, and efficient and lightweight electric motor have to be developed first.

A Technical Trend of Manufacturing and Materials of Nozzle Extension for Thrust Chamber (연소기 노즐확장부 제작 및 재료 기술 동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.505-509
    • /
    • 2011
  • The combustion chamber and nozzle of a liquid rocket engine should be protected from the high temperature combustion gas generated by the chamber. An upper-stage nozzle extension has a large expansion ratio, therefore, The light-weight refractory materials have been used since the weight impact on the launcher performance is crucial. Gas film cooling and ablative cooling methods were used before, but were not applicable nowadays. Radiative cooling method with niobium alloy, Ni-based superalloy and ceramic based composite has been used to this day.

  • PDF

Strength Experimets on Head and Cooling Channel Specimens of a Preburner (예연소기 헤드 및 냉각채널 시편 강도 시험)

  • Yoo, Jae-Han;Moon, In-Sang;Lee, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.50-55
    • /
    • 2011
  • A preburner for the high performance, staged combustion cycle liquid rocket engine is being developed. For the structural design processes, strength experiments and finite element analyses on specimens simulating the brazing joints of the preburner, were performed and compared. Total two kinds of the specimen were manufactured for the tests. One simulated the joints between the oxygen injectors and the head junctioned by the conventional vacuum brazing. The another was made to test the brazing surfaces by vacuum compression between the combustion chamber cooling channel and the outer wall. During the burst experiments, it was observed that the fractures were occurred not at the brazed joining but in the middle of the face plate and the cooling wall. In addition, the analysis showed that the predicted fracture locations and the strains were well matched with the experiment results.