• Title/Summary/Keyword: 액체수소

Search Result 313, Processing Time 0.021 seconds

The International Code Trend of High Pressure Hydrogen Cylinder and Establishing Domestic Code for the Hydrogen Fuel Cell Vehicle (수소연료전지차량 고압수소용기의 국제기준 동향 및 국내기준 개발방향)

  • Kim, Chang Jong;Lee, Seung Hoon;Kim, Young Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.225.2-225.2
    • /
    • 2010
  • 전 세계는 온실 가스의 방출을 줄이기 위하여 기존의 화석연료를 대체할 수 있는 에너지를 찾기 위해 연구개발에 박차를 가하고 있다. 이러한 계속적인 연구에서, 전 세계의 국가들은 태양열, 풍력, 지열 및 수소에너지와 같이 화석연료를 대체할 다양한 가스를 조사해왔다. 대체에너지 중 수소 연료는 실제로 배출가스가 없기 때문에 가장 유망한 대안이라고 할 수 있다. 연료전지자동차용 연료로 수소를 사용하기 위해서는 저장합금, 액체 및 압축 상태로 저장할 수 있다. 이 중 세계 대부분의 자동차 메이커 들은 수소를 압축하는 방식을 채택하고 있으며, 주행거리를 확보하기 위하여 고압상태로 수소가스를 저장하는 방식을 사용한다. 수소연료전지 자동차용으로 고압의 수소를 저장할 수 있고, 자동차에 탑재할 수 있도록 가벼운 용기의 개발이 진행되고 있다. 이 중 Type3와 Type4 형태의 용기가 시범적으로 적용되고 있으며, 이러한 용기의 안전성을 확보하기 위한 기준들이 국 내외에서 개발되고 있다. 현재 국제기준 중 UN ECE의 WG.29에서 선진국들을 중심으로 수소연료전지 자동차용 용기의 안전성 평가를 위한 기준을 개발하고 있다. 본 연구에서는 ISO. 15869의 기술기준에 대한 안전성 분석과 미국의 SAE J2579의 기술 보고서에서 제시한 새로운 개념의 안전성 평가 기법을 기준으로 제정되고 있는 UN ECE WG.29의 draft초안을 비교하고, 향후 수소연료전지 자동차용 용기를 위한 국내기준의 방향을 제시하고자 한다.

  • PDF

Applications of Ionic Liquids: The State of Arts (이온성액체의 응용기술 동향)

  • Lee, Hyunjoo;Lee, Je Seung;Kim, Hoon Sik
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • Ionic liquids are expanding their applications in various fields of chemistry, due to their unique properties such as negligible volatility, immisciblity with hydrocarbons, high electrical conductivity, and tunable acidity and basicity. In this paper, the physical properties, synthesis, and commercial applications of ionic liquids are discussed. Recent research trends are also briefly reviewed, particularly on application of ionic liquids to catalysis, biomass, and $CO_{2}$ capture and utilization.

Preparation and Characterization of Porous CeO2 Using Ionic Liquids (이온성액체를 이용한 다공성 산화세륨 합성)

  • Yoo, Kye Sang;Lee, Bu Ho
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.313-316
    • /
    • 2009
  • Synthesis of porous $CeO_2$ particles was investigated using various ionic liquids (ILs) as an effective template. The pore structure and crystalline phase of $CeO_2$ particles was affected significantly by the composition of ionic liquids. The strength of the hydrogen bonds on the anion part of ionic liquid was an essential factor to form the pore architecture of $CeO_2$ particles. Moreover, the length of alkyl group on the cation part of ionic liquid determined the pore size and surface area of $CeO_2$ particles. Among the ionic liquids, it was found that 1-Buthyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) was the most effective ionic liquid to synthesize the porous $CeO_2$ particle.

A Study of the Transient Characteristics of LRE Startup Using Several Starting Gases (다양한 구동가스를 사용한 액체로켓엔진의 시동특성 연구)

  • Moon, Yoon-Wan;Cho, Won-Kook;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.170-175
    • /
    • 2008
  • In this study, it was investigated that the characteristics of startup and compatibility using several type hot and cold gases. The characteristics of starting LRE by pyro starter was compared with that by a Helium spinner. The compatibility of pyro gas, a gaseous Helium, Hydrogen+Nitrogen mixture gas, and air was investigated by a simple 1D turbine analysis considered the properties of each gas and turbine efficiency. Most of them were compatible to start up the LRE however air was properly used only for low power mode of turbine.

  • PDF

Design and Operation of a Small-Scale Hydrogen Liquefier (소형 수소액화기 설계 및 운전에 관한 연구)

  • Baik, Jong Hoon;Karng, Sarng Woo;Kang, Hyungmook;Garceau, Nathaniel;Kim, Seo Young;Oh, In-Hwan
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.2
    • /
    • pp.105-113
    • /
    • 2015
  • In order to accelerate hydrogen society in current big renewable energy trend, it is very important that hydrogen can be transported and stored as a fuel in efficient and economical fashion. In this perspective, liquid hydrogen can be considered as one of the most prospective storage methods that can bring early arrival of the hydrogen society by its high gravimetric energy density. In this study, a small-scale hydrogen liquefier has been designed and developed to demonstrate direct hydrogen liquefaction technology. Gifford-McMahon (GM) cryocooler was employed to cool warm hydrogen gas to normal boiling point of hydrogen at 20K. Various cryogenic insulation technologies such as double walled vacuum vessels and multi-layer insulation were used to minimize heat leak from ambient. A liquid nitrogen assisted precooler, two ortho-para hydrogen catalytic converters, and highly efficient heat pipe were adapted to achieve the target liquefaction rate of 1L/hr. The liquefier has successfully demonstrated more than 1L/hr of hydrogen liquefaction. The system also has demonstrated its versatile usage as a very efficient 150L liquid hydrogen storage tank.

Analysis on Fluid Dynamics in the Cooling Tube for Manufacture of Liquid Hydrogen (액체수소 제조를 위한 냉각튜브 내 유동장 해석)

  • LEE, DAE-WON;NGUYEN, HOANG HAI;NASONOVA, ANNA;OH, IN-HWAN;KIM, KYO-SEON
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.4
    • /
    • pp.301-307
    • /
    • 2015
  • We present a study of hydrogen liquefaction using the CFD (Computational Fluid Dynamics) program. Liquid hydrogen has been evaluated as the best storage method because of high energy per unit mass than gas hydrogen, but efficient hydrogen liquefaction and storage are needed in order to apply actual industrial. In this study, we use the CFD program that apply navier-stokes equation. A hydrogen is cooled by heat transfer with the while passing gas hydrogen through Cu tube. We change diameter and flow rate and observe a change of the temperature and flow rate of gas hydrogen passing through Cu tube. As a result of, less flow rate and larger diameter are confirmed that liquefaction is more well. Ultimately, When we simulate the hydrogen liquefaction by using CFD program, and find optimum results, it is expected to contribute to the more effective and economical aspects such as time and cost.

Researches Trend to Produce Jet-fuel from Fischer-Tropsch Wax (Fischer-Tropsch 왁스로부터 항공유제조를 위한 촉매연구동향)

  • Park, Eun-Duck;Park, Myung-June;Kim, Yun-Ha;Kim, Myoung-Yeob;Jeong, Soon-Yong;Han, Jeong-Sik;Jeong, Byung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.793-794
    • /
    • 2010
  • Fischer-Tropsch(F-T) reaction, in which syngas($H_2+CO$) is transformed into liquid fuels, has attracted much attention recently due to the limited reservoir of petroleum. The formed F-T wax can be converted into various liquid fuels, such as gasoline, diesel, jet fuel, lubricants, etc., through the hydrocracking reaction. To carry out the hydrocracking reaction, the bifunctional catalyst is required, in which hydrogenation/dehydrogenation occurs over metal and cracking proceeds over solid acid sites. In this contribution, we review the reported hydrocracking catalysts and summarize some process variables (feed compositions, reaction temperature and reaction pressure) for each catalyst.

  • PDF

Technical Review on Liquid/Solid (Slush) Hydrogen Production Unit for Long-Term and Bulk storage (장주기/대용량 저장을 위한 액체/고체(Slush) 수소 생산 장치의 해외기술 동향분석)

  • LEE, CHANGHYEONG;RYU, JUYEOL;SOHN, GEUN;PARK, SUNGHO
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.565-572
    • /
    • 2021
  • Hydrogen is currently produced from natural gas reforming or industrial process of by-product over than 90%. Additionally, there are green hydrogens based on renewable energy generation, but the import of green hydrogen from other countries is being considered due to the output variability depending on the weather and climate. Due to low density of hydrogen, it is difficult to storage and import hydrogen of large capacity. For improving low density issue of hydrogen, the gaseous hydrogen is liquefied and stored in cryogenic tank. Density of hydrogen increase from 0.081 kg/m3 to 71 kg/m3 when gaseous hydrogen transfer to liquid hydrogen. Density of liquid hydrogen is higher about 800 times than gaseous. However, since density and boiling point of liquid hydrogen is too lower than liquefied natural gas approximately 1/6 and 90 K, to store liquid hydrogen for long-term is very difficult too. To overcome this weakness, this paper introduces storage method of hydrogen based on liquid/solid (slush) and facilities for producing slush hydrogen to improve low density issue of hydrogen. Slush hydrogen is higher density and heat capacity than liquid hydrogen, can be expected to improve these issues.

Analysis of Endothermic Regenerative Cooling Technologies by Using Hydrocarbon Aviation Fuels (탄화수소 항공유를 이용한 흡열재생냉각 기술분석)

  • Lee, Hyung Ju
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.113-126
    • /
    • 2021
  • In order to develop active cooling systems for a hypersonic cruise vehicle, a series of studies need to be preceded on regenerative cooling technologies by using endothermic reaction of liquid hydrocarbon aviation fuels. Among them, it is essential to scrutinize fluid flow/heat transfer/endothermic pyrolysis characteristics of supercritical hydrocarbons in a micro-channel, as well as to acquire thermophysical properties of hydrocarbon fuels in a wide range of temperature and pressure conditions. This study, therefore, reviewed those technologies and analyzed major findings in related research areas which have been carried out worldwide for the development of efficient operational regenerative cooling systems of a hypersonic flight vehicle.

BTX의 폭발특성에 관한 연구

  • 김종복;오규형;이성은;류창하
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.140-145
    • /
    • 2000
  • BTX는 석유화학곧업에서 생산되는 방향족탄화수소 화합물의 주요 생산품목인 Benzene, Toluene, Xylene을 일컫는 말로서 석유화학공정에서 간단히 줄여서 쓰는 용어이다. 벤젠, 톨루엔, 크실렌 등은 페인트 희석제로 쓰이는 유기용매의 주성분들이며, 인체에 중독성을 나타내는 유해물질이기도 하며 소방법상에서는 인화성액체인 4류 위험물로 취급하고 있다.(중략)

  • PDF