Browse > Article

Preparation and Characterization of Porous CeO2 Using Ionic Liquids  

Yoo, Kye Sang (Department of Chemical Engineering, Seoul National University of Technology)
Lee, Bu Ho (Department of Chemical Engineering, Seoul National University of Technology)
Publication Information
Applied Chemistry for Engineering / v.20, no.3, 2009 , pp. 313-316 More about this Journal
Abstract
Synthesis of porous $CeO_2$ particles was investigated using various ionic liquids (ILs) as an effective template. The pore structure and crystalline phase of $CeO_2$ particles was affected significantly by the composition of ionic liquids. The strength of the hydrogen bonds on the anion part of ionic liquid was an essential factor to form the pore architecture of $CeO_2$ particles. Moreover, the length of alkyl group on the cation part of ionic liquid determined the pore size and surface area of $CeO_2$ particles. Among the ionic liquids, it was found that 1-Buthyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) was the most effective ionic liquid to synthesize the porous $CeO_2$ particle.
Keywords
porous $CeO_2$; ionic liquid; 1-buthyl-3-methylimidazolium hexafluorophosphate;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 S. Tsunekawa, R. Sahara, Y. Kawazoe, and A. Kasuya, Mater. Trans., 41, 1104 (2000)   DOI
2 N. Izu, W. Shin, N. Murayama, and S. Kanzaki, Sens. Actuator B: Chem., 87, 95 (2002)   DOI   ScienceOn
3 M. Hirano and M. Inagaki, J. Mater. Chem., 10, 473 (2000)   DOI   ScienceOn
4 Y. Zhou and M. N. Rahaman, Acta Mater., 45, 3635 (1997)   DOI   ScienceOn
5 E. Bekyarova, P. Fornasiero, J. Kaspar, and M. Graziani, Catal. Today., 45, 179 (1998)   DOI   ScienceOn
6 M. Alifanti, B. Baps, N. Blangenois, J. Naud, P. Grange, and B. Delmon, Chem. Mater., 15, 395 (2003)   DOI   ScienceOn
7 M. Hirano and E. Kato, J. Am. Ceram. Soc., 79, 777 (1996)   DOI
8 P. L. Chen and I. W. Chen, J. Am. Ceram. Soc., 76, 1577 (1993)   DOI   ScienceOn
9 L. Z. Wang, S. Tomura, M. Maeda, F. Ohashi, K. Inukai, and M. Suzuki, Chem. Lett., 12, 1414 (2000)
10 K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscow, R. A. Pierotti, J. Rouquerol, and T. Siemieniewska, Pure Appl. Chem., 57, 603 (1985)   DOI
11 M. Hirano, Y. Fukuda, H. Iwata, Y. Hotta, and M. Inagaki, J. Am. Ceram. Soc., 83, 1287 (2000)   DOI
12 X. Chu, W. Chung, and L. D. Schmidt, J. Am. Ceram. Soc., 76, 2115 (1993)   DOI   ScienceOn
13 L. Madler, W. J. Stark, and S. E. Pratsinis, J. Mater. Res., 17, 1356 (2002)   DOI   ScienceOn
14 H. Yahiro, Y. Baba, K. Eguchi, and H. Arai, J. Electrochem. Soc., 135, 2077 (1988)   DOI   ScienceOn
15 A. Trovarelli, C. de Leitenburg, M. Boaro, and G. Dolcetti, Catal. Today., 50, 353 (1999)   DOI   ScienceOn
16 X. J. Yu, P. B. Xie, and Q. D. Su, Phys. Chem. Chem. Phys., 3, 5266 (2001)   DOI   ScienceOn
17 P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed., 39, 3773 (2000)   DOI   ScienceOn
18 S. H. Lee, Z. Y. Lu, S. V. Babu, and E. Matijevic, J. Mater. Res., 17, 2744 (2002)   DOI   ScienceOn
19 C. Laberty-Robert, J. W. Long, E. M. Lucas, K. A. Pettigrew, R. M. Stroud, M. S. Doescher, and D. R. Rolison, Chem. Mater., 18, 50 (2006)   DOI   ScienceOn
20 T. Welton, Chem. Rev., 99, 2071 (1999)   DOI   PUBMED   ScienceOn
21 Y. Liu, Z. Lockman, A. Aziz, and D. J. MacManus, J. Phys. Condens. Mater., 20, 765 (2008)