• Title/Summary/Keyword: 액적 거동

Search Result 124, Processing Time 0.025 seconds

Visualization of Marangoni Convection Behavior between Two Surfactant Dropwises in the Process of Steam Absorption (증기흡수시(蒸氣吸收時) 계면활성제액적간(界面活性劑液滴間)에 발생(發生)하는 마랑고니대류거동(對流擧動)의 가시화(可視化))

  • Rie, D.H.;Choi, K.K.;Kashiwagi, T.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-71
    • /
    • 1992
  • In most absorption machines, absorption enhancement has been achieved by adding small amount of surfactant additive, which introduced the surface tension difference between absorbent and surfactant droplets in the vapor absorption. The aim of this study is to understand a basic mechanism of Marangoni convection and its effectiveness in the vapor absorption enhancement. In this study, nonflowing aqueous solution of LiBr 60 mass% was exposed to saturated water vapor under the condition that two dropwises surfactant were fixed on the absorbent surface. Our experiments achieved to visualize the enhanced heat and mass transfer phenomena by the effect of Marangoni convection through the laser holographic interferometry. Also, Marangoni convection behavior was obtained by using tracer method.

  • PDF

Particle Size Measurements Using Phase Doppler Technique (위상도플러법에 의한 입자의 크기측정)

  • 최태민;김상진;박무룡
    • Journal of the KSME
    • /
    • v.33 no.12
    • /
    • pp.1076-1085
    • /
    • 1993
  • 레이저광이 가지는 지향성, 단색성, 공간적 집속성 등의 성질을 이용하는 각종 측정장치는 광섬 유의 발달과 새로운 신호처리계의 개발로 그 적용 범위가 점점 확대되고 있다. 레이저 도플러 신호의 위상차를 이용하여 운동상태의 입자의 크기와 속도를 동시에 측정할 수 있는 측정장치가 80년대에 실용화되어 캐비테이션, 분무노즐, 기름버너, 엔진연소 등 많은 분야에서 다양하게 사 용되고 있다. 이 측정방법은 Durst와 Zare에 의해 도플러 신호의 위상과 입자의 크기는 선형적인 함수 관계가 있음이 밝혀진 이래, Bachalo, Buchhave, Knuhfsen과 Olldag 등에 의해 급속히 발 전되었다. 현재 국내에도 덴마크의 단텍사, 미국의 에어로메트릭스사 등에서 개발한 장비가 3-4 기관에서 사용되고 있다. 이 글에서는 위상도플러법에 의한 입자의 크기측정에 관한 기초 이론을 참고문헌을 인용하여 설명하고, 단텍사에서 개발한 위상도플러 측정장치인 입자운동 해석장치 (PDA)를 사용하여 본 연구실에서 실험한 버너용 압력분사식 노즐에서 분사된 액적들의 국소부분 거동에 대해 소개하기로 한다.

  • PDF

A Study on the Numerical Analysis of Behavior of Spray Droplets and Internal Flow Field of Cylinder in Diesel Engine (디젤기관의 실린더내 유동 및 분무액적 거동의 수치적 연구(I))

  • 장영준;박호준;전충환;김진원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.35-46
    • /
    • 1992
  • In this study, we calculated gas flow fields and distribution of fuel droplet and mass fraction using the CONCHAS-SPRAY code which modified to execute in IBM PC and changed three important factors, injection rate pattern (BASIC, I, II, III), different bowl shape and spray type. Especially vortices which be influenced by fuel-air mixing process, evaporation and flame propagation are generated more strongly in the bowl-piston type combustion chamber than in the flat-piston type. As the spray type changes, it is found that conical type produced large and strong vortices and fuel droplets are effictively diffused into the entire combustion chamber. As the injection rate pattern changes I, II, III based on BASIC type, we confirmed that End-of-Injection Effect strongly influence on droplets life time.

  • PDF

An Experimental Study on Vaporization and Combustion Behavior for Single Droplets of Water-in-Oil Emulsified Fuels (유화연료 단일액적의 증발 및 연소거동에 관한 실험적 연구)

  • Kim, B.S.;Kim, D.I.;Oh, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.931-936
    • /
    • 2000
  • An experimental study has been carried out of the combustion behavior of single fuel droplets of water-in-light oil emulsions in an electric furnace to elucidate the dominant factor for the occurrence of micro-explosions. The tests were carried out by changing the following four parameters; the size of water droplets in the emulsified fuels having the same water content, the ratio of water to light oil, ambient temperature in electric furnace, and the kind of fuel having different viscosity(Kerosene, Olive Oil). The result shows that the each parameter plays the different role in the effect on behavior of vaporization, explosion, ignition and combustion for single droplets of water-in-oil Emulsified fuels.

  • PDF

Measurement of the Superheat Limit of Liquids and Droplet Behavior at this Limit (액체의 과열한계 측정과 과열한계에 달한 액적의 거동)

  • Park, Hong-Chul;Byun, Gi-Taek;Kwak, Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1317-1326
    • /
    • 2003
  • The maximum temperature limit at which liquid boils explosively is called the superheat limit of liquids. The superheat limits of hydrocarbon liquids and their mixtures were measured by the droplet explosion technique. Also the fully evaporated droplet at the superheat limit and subsequent bubble evolution from the fully evaporated droplet were visualized. The pressure wave emanating from the evaporating droplet and subsequent bubble evolution process were measured by a piezoelectric transducer.

An Experimental Study on Vaporization and Combustion Behavior for Single Droplets of Water-in-Oil Emulsified Fuels (유화연료 단일액적의 증발 및 연소거동에 관한 실험적 연구)

  • Park, M.C.;Kim, B.S.;Oh, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.81-89
    • /
    • 2000
  • An experimental study has been carried on single fuel droplets of water-in-light oil emulsions in an electric furnace to elucidate the dominant factor for the occurrence of micro-explosions. The tests were carried out by changing the following four parameters; the surfactant, the ratio of water to light oil, ambient temperature in electric furnace, and four kinds of fuels having different viscosity(light-oil, kerosene, iso-octane, bunker fuel). The result shows that micro-explosion phenomena is dominated without surfactant and below 30% of water content. Explosion-time is affected by ambient temperature and viscosity of used fuel.

  • PDF

Experimental and Numerical Study on the Air-assist Atomizer Spray Droplets (2유체 분무 액적의 거동에 관한 실험 및 수치 해석적 연구)

  • Kim, D.I.;Oh, S.H.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.65-76
    • /
    • 1998
  • An experimental and numerical study of a spray flow is performed to investigate the spray characteristics using an air-assisted atomizer. A Partical Dynamic Analyzer(PDA) is used to measure SMD, dmp velocity, and drop number density whose the initial conditions have considerable effect on the numerical results. The measured experimental data have been used to asses the accuracy of model predictions. Numerical investigation is made with the Eulerian - Lagrangian formulism. Turbulent dispersion effects using a Monte-Carlo method, turbulent modulation effect and entrainment of air are also numerically simulated. Results show that the numerical predictions of SSF(Stochastic Separated Flow) analysis yielded reasonable agreement with the experimental data. However, the model calculations for small drops produced the inconsistent numerical results due to the effect of surrounding air entrainment.

  • PDF

Wetting Behavior and Evaporation Characteristics of Nanofluid Droplets on Glass Surfaces (나노유체 액적의 젖음거동 및 증발 특성)

  • Shin, Dong-Hwan;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.9-13
    • /
    • 2012
  • This study investigates experimentally evaporation characteristics of nanofluid droplets containing 50 nm alumina($Al_2O_3$) particles and the wettability changes on a hydrophilic glass surfaces. From the captured digital images by using a CMOS camera and a magnifying lens, we examined the effect of particle concentration on droplet evaporation rate which can be indirectly deduced from the measured droplet volumes varying with time. In particular, with the use of a digital image analysis technique, the present study measured droplet perimeters and the contact angles to study the wetting dynamics during evaporating process. In addition, we compared the measured total evaporation time with theoretically estimated values. It was found that as the volume fractions of nanofluid increased, the total evaporation time and the initial contact angles decreased, while the droplet perimeters increased.

Effect of Ambient Conditions on Spray Behavior of Gasoline Injector (가솔린 분무 거동에 미치는 분위기 조건의 영향)

  • 이창식;이기형;최수천;권상일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.27-32
    • /
    • 2000
  • The main objective of this work is to investigate the effect of ambient conditions on the spray behavior and spray characteristics of high-pressure fuel injector. For this purpose, the effects of ambient pressure and temperature on the spray characteristics have been studied by applying the analysis of visualization system and phase Doppler particle analyzer. In this experiment, the visualization of spray behavior was performed under various ambient gas conditions and injection parameters such as gas temperature, ambient pressure, injection pressure of injector, and axial distance from the nozzle tip. Based on the investigation results, the spray tip penetration and spray width decrease with the increase of ambient gas pressure in the spray chamber. The effects of the spray parameters on the microscopic characteristics of gasoline spray were discussed.

  • PDF

Water droplet behavior on a solid-infused surface cured with commercial Gentoo polymer (상용 Gentoo 폴리머가 경화된 고체주입표면에서 물방울 거동)

  • Hyeongwon Kim;Jeong-Hyun Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.61-67
    • /
    • 2024
  • In this study, the behavior of water droplets on a solid-infused surface was evaluated by quantifying a water droplet's contact angle, sliding angle, and terminal velocity. The contact angle hysteresis and sliding angle of water on the solid-infused surface were measured to be lower than those of the hydrophobic PTFE surface. It led to the enhancement of the initiation of the water droplet's movement. When the capillary number was lower than Ca < 0.004, the terminal velocity of the water droplet on the solid-infused surface was higher than the PTFE surface due to the low contact line resistance. However, the transition of the droplet morphology from a hemispherical shape to a streamlined teardrop shape beyond Ca > 0.004 lost the effect of reducing frictional resistance on the solid-infused surface.