Browse > Article
http://dx.doi.org/10.15435/JILASSKR.2012.17.1.009

Wetting Behavior and Evaporation Characteristics of Nanofluid Droplets on Glass Surfaces  

Shin, Dong-Hwan (중앙대학교 기계공학부)
Lee, Seong-Hyuk (중앙대학교 기계공학부)
Publication Information
Journal of ILASS-Korea / v.17, no.1, 2012 , pp. 9-13 More about this Journal
Abstract
This study investigates experimentally evaporation characteristics of nanofluid droplets containing 50 nm alumina($Al_2O_3$) particles and the wettability changes on a hydrophilic glass surfaces. From the captured digital images by using a CMOS camera and a magnifying lens, we examined the effect of particle concentration on droplet evaporation rate which can be indirectly deduced from the measured droplet volumes varying with time. In particular, with the use of a digital image analysis technique, the present study measured droplet perimeters and the contact angles to study the wetting dynamics during evaporating process. In addition, we compared the measured total evaporation time with theoretically estimated values. It was found that as the volume fractions of nanofluid increased, the total evaporation time and the initial contact angles decreased, while the droplet perimeters increased.
Keywords
Nanofluid; Evaporation; Volume fraction; Equilibrium contact angle; Perimeter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Xuan and Q. Li, "Heat transfer enhancement of nanofluids", Int. J. Heat Fluid Flow, Vol. 21, Issue. 4, 2000, pp. 58-64.   DOI
2 J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thopson, "Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles", Appl. Phys. Lett., Vol. 78, Issue. 6, 2001, pp. 718-720.   DOI
3 장석필, "나노유체의 기술 현황 및 미래", 기계저널, 2006, 제46권, 제7호, pp. 34-36.
4 이지환, 장석필, "알루미나 나노유체의 유동 특성에 관한 연구", 대한설비공학회 2005 동계학술발표대회논문집, 2005, 제 25권, pp. 546-551.
5 S. Vafaei, T. Borca-Tasciuc, M. Z. Podowski, A. Purkayastha, G. Ramanath and P. M. Ajayan, "Effect of nanoparticles on sessile droplet contact angle", Nanotechnology, Vol. 17, Issue. 10, 2006, pp. 2523-2527.   DOI
6 K. Sefinae and R. Bennacer, "Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates", Adv. Colloid Interface Sci., Vol. 147-148, Issue. C, 2009, pp. 263-271.   DOI
7 S. Vafaei, A. Purkayastha, A. Jain, G. Ramanath and T. Borca-Tasciue, "The effect of nanoparticles on the liquid- gas surface tension of $Bi_2Te_3$ nanofluids", Nanotechnology, Vol. 20, 2009, 185702(6pp).   DOI
8 Z. H. Liu, X. F. Yang and J. G. Xiong, "Boiling characteristics of carbon nanotube suspensions under subatmospheric pressures", Int. J. Therm. Sci., Vol. 49, Issue. 7, 2010, pp. 1156-1164.   DOI
9 C. H. Chon, S. W. Paik, J. B. Tipton and K. D. Kihm, "Effect of nanoparticle sizes and number densities on the evaporation and dryout characteristics for strongly pinned nanofluid droplet", Langmuir, Vol. 23, Issue. 6, 2007, pp. 2953-2960.   DOI
10 R. H. Chen, T. X. Phuoc and D. Martello, "Effect of nanoparticles on nanofluid droplet evaporation", Int. J. Heat Mass Transfer, Vol. 53, Issue. 19-20, 2010, pp. 3677-3682.   DOI
11 D. H. Shin, S. H. Lee, J. Y. Jung and J. Y. Yoo, "Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces", Microelectronic Eng., Vol. 86, Issue. 4-6, 2009, pp. 1350-1353.   DOI
12 V. P. Carey, "Liquid-vapor phase-change phenomena", Taylor and Francis, London, 2008.
13 R. Prasher, D. Song and J. Wang, "Measurements of nanofluids viscosity and its implications for thermal application", Appl. Phys. Lett., Vol. 89, Issue. 13, 2006, 133108(3pp).   DOI
14 S. Vafaei, D. Wen and T. Borca-Tasciuc, "Nanofluid surface wettability through asymptotic contact angle", Langmuir, Vol. 27, Issue. 6, 2011, 2211-2218.   DOI
15 H. Hu and R. G. Larson, "Evaporation of a sessile droplet on a substrate", J. Phys. Chem. B, Vol. 106, Issue. 6, 2002, pp. 1334-1344.   DOI
16 T. Lim, J. J. Jeong, J. Chung and J. T. Chung, "Evaporation of inkjet printed pico-liter droplet on heated substrates with different thermal conductivity", J. Mech. Sci. Technol., Vol. 23, Issue. 7, 2009, pp. 1788-1794.   DOI
17 Y. O. Popov, "Evaporative deposition patterns: spatial dimensions of the deposit", Phys. Rev. E, Vol. 71, Issue. 3, 2005, 036313(17pp).