• Title/Summary/Keyword: 압출길이

Search Result 64, Processing Time 0.034 seconds

Techniques of Optimizing the Launching Nose under Conditions of Minimizing the Launching Bending Moment (압출가설시 발생하는 휨모멘트의 최소화 조건을 통한 압출노즈의 최적설계)

  • Choi, Hang Yong;Suh, Suk Koo;Oh, Myung Seok;Oh, Sae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.487-495
    • /
    • 2008
  • The behavior of nose-deck system during launch was examined by three dimensionless launching parameters, such as the relative flexural stiffness, the relative nose weight, and the relative nose length. The techniques of optimizing the launching nose were illustrated and equations of relationship between relative nose weight and relative nose length were derived under minimum conditions of the launching negative and positive moment. Equations of maximum positive and negative moment were suggested under the conditions. The optimum design method of the launching nose was proposed in launched continuous girder bridges. It was found that the ideal launching nose was to design that with the relative nose weight of 0.167 and the relative nose length of 0.836 to minimize absolute values of the positive and negative moment during launch.

The Effects of a Launching Nose on Main Girder Erected by Incremental Launching Method (압출공법에 의한 가설시 추진코가 주형에 미치는 영향)

  • Oh, Kwi Hwan;Kim, Chul Young;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.1-10
    • /
    • 1992
  • Since the structural system of a prestressed concrete bridge erected by Incremental Launching Method is varying continuosly during construction, the main girder bears alternating stress resultants different from those under a service load condition. The magnitude of these stress resultants depends on span lengths, nose length and stiffness ratios between girder and nose. A parametric study is performed for various span lengths, nose lengths and stiffness ratios. In order to analyze structural systems varying at every launching step two programs are developed; a pre-processor which automatically produces a data file for each stage and a main-processor which can summarize the results of all stages. From the results, the relationships between optimum nose length and stiffness ratio are proposed for various span lengths.

  • PDF

Analysis of the O-ring Deformation Behavior by the Computed Tomography (전산화 단층촬영에 의한 오링 변형 거동 분석)

  • Kim, Dong-Ryun;Park, Sung-Han;Lee, Hwan-Gyu;Koo, Hyung-Hoi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.25-29
    • /
    • 2006
  • The object of this study is to develop new examination techniques for measuring the O-ring deformation behavior under the pressure condition. The extrusion lengths measured from the computed tomography were in good agreement with the results that measured from non-contact laser displacement sensor. The deformed shapes of O-ring measured by the computed tomography and evaluated by the FEM agreed well with the extrusion length and the expanded diameter. But the contact widths of the O-ring and steel measured by the computed tomography were a little larger than the results of the FEM.

  • PDF

Analysis of Two-Span Structures Constructed by Incremental Launching Method (ILM 공법에 의해 시공된 2경간 구조물의 해석)

  • Kim, Sung Hoon;Kim, Bu Kyu;Choi, Jun Hyeok
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • This paper presents the structural analysis of two-span structures constructed by incremental launching method to traverse the existing facilities. The structure with a relatively short launching span can not be secure the structural stability caused by excessive deflection and overturning prior to reaching the maximum strength, because the length of the other span is different or the rear structure is not continuous. In order to estimate the stability of the construction stages of deflection and the overturning, the structural analysis was carried out. The parameters of the analysis is launching span ratio of the launching nose and the upper structure, weight ratio and so on. From the analysis result, the effects of parameters were investigated and a deflection formula of the launching nose and the condition of the overturning of structure were proposed.

정밀 압출과 초정밀 기계가공을 이용한 진공용기 시제품 제작

  • Hong, Man-Su;Gwon, Hyeok-Chae;Ha, Tae-Gyun;Park, Jong-Do
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.230-230
    • /
    • 2012
  • 제4세대 가속기용 언듈레이터 진공용기는 길이가 긴 반면에 그 단면은 매우 작고 또 정밀하게 제작되어야 한다. 이 진공용기는 알루미늄을 재료로 압출법으로 일차 모양을 만든 후에 정밀 기계가공으로 제작한다. 언듈레이터 제작을 성공적으로 수행하기 위하여서는 길이 6,000 mm에서 평탄도 0.1 mm, 두께 0.5 mm를 가지는 정밀 진공용기 제작 공정을 확보하여야 한다. 포항 가속기 연구소 진공팀에서는 이 같은 초정밀 진공용기를 제작하기 위한 정밀 압출, 초정밀 기계가공 공정을 개발하고 있으며 공정 개발용 1차 시제품을 제작하고 있다. 본 논문에서는 현재까지 수행한 공정 개발 및 그 결과를 정리하여 보고하며 앞으로의 개발 과정도 다루고자 한다.

  • PDF

Design Formula for Launching Nose of ILM Bridge Considering the Interaction Behavior with Superstructure Sections (상부단면과의 상호작용을 고려한 ILM 교량용 압출추진코의 최적화 설계식)

  • Lee, Hwan-Woo;Jang, Jae-Youp
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • In constructing ILM(Incremental Launching Method) bridges, a launching nose is generally used in order to absorb temporary stress occurring during launching. The sectional forces of superstructure of ILM bridges, which occurs during launching, varies significantly according to the length, weight and stiffness of the launching nose. Thus in order to guarantee the safety of section of ILM bridges, the change of stress according to interaction behavior between launching nose and superstructure should be considered. However, the span division and span length are often decided based on previous cases in practice. It makes the design sections of launching nose are similar in spite of different projects. The designer's anxiety to optimize the launching nose to affect the optimum design of superstructure is also weak. In this study, an design formular to optimize the nose is proposed by using the analysis formular of nose-deck interaction and the design level of ILM bridges constructed on 00 Expressway is examined. According to the result of this study, the proposed design formulas are expected to make a significant contribution to section design that is economically efficient and at the same time guarantees the safety of the superstructure and launching noses of ILM bridges regardless of span length.

Numerical Analysis of the Non-Isothermal Heat Transfer in Solids Conveying Zone of a Single Screw Extruder (단축압출기 고체수송부에서의 비등온 열전달 현상에 관한 수치 해석)

  • Ahn Young-Cheol
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.549-556
    • /
    • 2005
  • Effects of the dimensionless variables on the heat transport phenomena in the extrusion process of a single screw extruder have been studied numerically. Based on the understanding of the solids conveying related to the geometrical structure and characteristics of the screw, the heat balance equation for the solids conveying zone was established and normalized. The finite volume method and power-law scheme were applied to derive a discretized equation and the equation was solved using the alternating direction iterative method with relaxation. Effects of the dimensionless parameters, Biot and Peclet numbers, that define the heat transfer characteristics of the solids conveying zone have been investigated with respect to the temperature of the feeding zone and the length of the solids conveying zone. As the Biot number is increased, the heat loss by cooling dominates to decrease the temperature of the barrel but it has little effects on the temperature of the solids bed and the length of the solids conveying zone. On the other hand, if the Peclet number is increased, the convection term dominates to decrease the temperature of the solids bed and it results in an increase in the length of the solids conveying zone.

A UBET Analysis on the Lateral Extrusion Process of a Spider (스파이더의 측방 압출 공정에 대학 UBET해석)

  • Lee, Hee-In;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.174-181
    • /
    • 2001
  • An upper bound elemental technique(UBET) has been carried out to predict the forming load, the deformation pattern and the extrude length of the lateral extrusion of a spider for the automotive universal joint. For the upper bound analysis, a kinematically admissible velocity field(KAVF) is proposed. From the proposed velocity field, the upper bound load, the deformation pattern and the average length of the extruded billets are determined by minimizing the total energy consumption rate which is a function of unknown velocities at each element. Experiments are carried out with antimony-lead billets at room temperature using the rectangular shape punch. The theoretical prediction of the forming load, the deformation pattern and the extruded length are good in agreement with the experimental results.

  • PDF

A UBET Analysis on the Lateral Extrusion Process of a Spider (스파이더의 측방 압출 공정에 대한 UBET 해석)

  • 황범철;이희인;배원병
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1129-1133
    • /
    • 2001
  • An upper bound elemental technique(UBET) has been carried out to predict the forming load, the deformation pattern and the extruded length of the lateral extrusion of a spider for the automotive universal joint. For the upper bound analysis, a kinematically admissible velocity field(KAVF) is proposed. From the proposed velocity field, the upper bound load, the deformation pattern and the average length of the extruded billets are determined by minimizing the total energy consumption rate which is a function of unknown velocities at each element. Experiments are carried out with antimony-lead billets at room temperature using the rectangular shaped punch. The theoretical prediction of the forming load, the deformation pattern and the extruded length are good in agreement with the experimental results.

  • PDF

A UBET Analysis of Non-axisymmetric Forward and Backward Extrusion (비축대칭 전후방압출공정의 UBET해석)

  • Lee, Hee-In;Kim, Jin-Kyu;Hwang, Bum-Chul;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.154-161
    • /
    • 2001
  • A UBET analysis has been carried out to predict the forming load and the extruded length of forward and backward extrusion of hexagonal and trochoidal wrench colts. For the upper bound load and the average length of the extruded billets are determined by minimizing the total energy consumption rate which is a function of unknown velocities and parameters at each element. Experiments are carried out with antimony-lead billets at room temperature using hexagonal and trochoidal shaped punches. The theoretical predictions of the forming load and the extruded length are in good agreement with the experimetal results.

  • PDF