• Title/Summary/Keyword: 압축 강도

Search Result 5,179, Processing Time 0.033 seconds

A Nonlinear Material Model for Concrete Compression Strength Considering Confining Effect (30-40Mpa의 압축강도를 갖는 콘크리트의 구속효과를 고려한 비선형 재료모델의 적용성 검토)

  • Lee, Heon-Min;Park, Jae-Guen;Hwang, Jae-Min;Yun, Hee-Tack;Shin, Hyun-Mock
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.379-382
    • /
    • 2009
  • 횡방향으로 구속된 콘크리트의 응력-변형률 거동은 구속되지 않은 콘크리트와는 다른 거동을 한다. 보통강도 콘크리트에서 구속효과를 고려한 콘크리트 재료모델로는 Mander 모델이 대표적이며 고강도 콘크리트의 구속효과의 경우 여러 연구자들에 의하여 제안된 모델 중 공시체 수준의 실험결과와 잘 일치하는 Sakino-Sun 모델을 사용하였다. 보통강도에서는 Mander모델을 고강도 콘크리트에서는 Sakino-Sun 모델을 사용하였으나 중간 강도인 30-40MPa의 강도에서 Mander 모델과 Sakino-Sun 모델의 적용시 실험결과와 해석결과가 다소 차이를 보이며 또한 두 모델은 적용할 수 있는 최대 또는 최소 콘크리트 압축강도의 한계범위가 명확하지 않다. 따라서 이 연구에서는 30-40MPa의 강도의 횡방향으로 구속된 콘크리트의 비선형 재료모델을 제안하고 실제 30-40MPa의 압축강도를 갖는 콘크리트 공시체의 일축압축시험 결과와의 비교를 통해 그 적용성을 검토하였다.

  • PDF

Study on Correlation between Compressive Strength and Compressional Wave Velocity for CLSM According to Curing Time (양생시간에 따른 CLSM의 압축강도 및 압축파 속도 상관성 연구)

  • Han, Woojin;Lee, Jongsub;Cho, Samdeok;Kim, Jinhwan;Byun, Yonghoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.5-11
    • /
    • 2015
  • The development of Controlled Low Strength Material (CLSM), which is a highly flowable material, has been performed for the application of backfill. The objective of this study is to compare the compressive strength and compressive wave velocity of CLSM according to the curing time. To investigate the characteristics of the CLSM consisting of sand, silt, water, flyash, and CSA cement, uniaxial compression test and flow test were carried out. For the measurement of compressional waves, a cell and a couple of transducers were used. The test results show that the compressive strength increases with the curing time, while the increment of compressive strength decreases with the curing time. In addition, the compressive wave velocity increases with the curing time, and the correlation between the compressive wave velocity and compressive strength is similar to exponential function. This study suggests that the correlation between the compressive wave velocity and compressive strength may be effectively used for the estimation of compressive strength of the CLSM at early curing time.

An Experimental Study on the Explosive Spalling Properties of Concrete according to Concrete Compressive Strength and Moisture rate (콘크리트의 압축강도 및 함수율에 따른 폭렬특성에 관한 연구)

  • Lee, Jae-Young;Kim, Dong-Jun;Kwon, Young-Jin;Harada, Kazunori
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.147-154
    • /
    • 2009
  • 화재와 같은 고온의 환경에서 콘크리트의 고강도화는 폭렬(Explosive Spalling)이라는 큰 위험성을 가지고 있으며, 이러한 폭렬의 원인으로는 콘크리트 내부의 수증기압이 가장 큰 원인으로 제기되고 있다. 본 논문은 콘크리트의 폭렬발생 있어서 압축강도 및 함수율이 초기 폭렬특성에 미치는 영향을 실험적으로 검토하기위하여 건축구조물의 화재 온도조건인 ISO834 화재온도이력곡선을 15분, 30분 적용하여 콘크리트의 초기 폭렬특성을 검토하였다. 그 결과 압축강도 가열시간 함수율이 증가할수록 폭렬발생 및 폭렬현상이 증대되는 경향이 나타났으며, 15분, 30분 가열시간에 따른 잔존강도율을 나타내었다. 또한, 압축강도 및 함수율에 따른 폭렬발생영역을 분석하였으며, 압축강도 50${\sim}$100 MPa의 경우 함수율 3%이하, 100 MPa이상의 경우는 1%이하로 제어할 경우 폭렬현상이 발생하지 않을 것으로 판단되었다.

  • PDF

The Effect of Steel-Fiber Contents on the Compressive Stress-Strain Relation of Ultra High Performance Cementitious Composites (UHPCC) (UHPCC의 압축응력-변형률 관계에 대한 강섬유 혼입률의 영향)

  • Kang, Su-Tae;Ryu, Gum-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • The effect of steel-fiber contents on the compressive behavior of ultra high performance cementitious composites (UHPCC) was studied to propose a compressive behavior model for UHPCC. The experiments considered fiber contents of 0~5 vol.% and the results indicated that compressive strength and corresponding strain as well as elastic modulus were improved as the fiber contents increased. Compared to the previous study results obtained from concrete with compressive strength of 100MPa or less, the reinforcement effect on strength showed similar tendency, while the effect on the strain and elastic modulus were much less. Strength, strain, and elastic modulus according to the fiber contents were presented as a linear function of fiber reinforcement index (RI). Fiber reinforcement in UHPCC had no influence on the shape of compressive behavioral curve. Considering its effect on compressive strength, strain, and elastic modulus, a compressive stress-strain relation for UHPCC was proposed.

Changes in Compression Strength of Corrugated Paperboard Box for (콜드체인용 골판지 상자의 냉기공에 따른 압축강도 변화)

  • 김윤호;박형우;김병삼;차환수;홍석인
    • Food Science and Preservation
    • /
    • v.10 no.4
    • /
    • pp.466-469
    • /
    • 2003
  • To develope corrugated paperboard box for cold chain system, it was investigated to compression strength and size of air hole. The size of air holes of the side tested box were designed as six groups, 4, 7, 10% and two kind of air hole, 2, 3 hole per the side. Compression strength of box(440${\times}$330${\times}$170 mm(length${\times}$width${\times}$height))was tested by compression tester UM-20Y, DaeSin Co., Korea, speed is 12.5 mm/min), it was stored 4 week at room temperature, RH 70${\times}$5%. Compression strength was high the mort narrow, the longer of air hole. Compression strength of box of the side, 4% was 10% higher among 4, 7, 10%, but differentiate of compression strength owing to the number of air hole was below 10%. for improving the compression strength of box, paper board box for cold chain system was made of the narrow of width and of the long length of air hole.

Capacity and Length of Compression Lap Splice in Unconfined Concrete of 100MPa and Less Compressive Strength (횡보강근이 없는 100 MPa 이하 콘크리트의 철근 압축이음 강도와 이음길이)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.659-666
    • /
    • 2010
  • Although the compression splice needs not be longer than the tension slice due to existence of end bearing, current design codes impose a longer compression lap splice than a tension lap splice in high strength concrete. Hence, new criteria for the compression lap splice including the effects of concrete strength need to be sought for economical design involving ultra-high strength concrete. An experimental study has been conducted with column specimens in concrete strength of 80 and 100 MPa. Test results show that the splice strength can be evaluated to be proportional to square root of compressive strength of concrete. Bar stress developed by end bearing is not affected by splice length and is expressed with a function of the square root of concrete strength. Mean value of stresses developed by end bearing is 16.5 square root of $f_{ck}$. The stresses developed by bond in compression splices are nearly identical to those in tension splices and, therefore, strength increment of compression splices is attributed to end bearing only. From regression analysis of 58 tests, a design equation is proposed for compression lap splice in 40 to 100 MPa of compressive strength of concrete. By the proposed equation, the anomaly of lap lengths in tension and compression is got rid of. In addition, the equation has a reliability equivalent to those of the specified strengths of materials.

Mechanical Behavior of Plain and Steel Fiber Reinforced High Strengh Concrete Under Biaxial Compression (2축 압축을 받는 고강도 콘크리트 및 강섬유보강 고강도 콘크리트의 역학적 거동 특성)

  • Lim Dong-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.803-809
    • /
    • 2005
  • The purpose of this study is to investigate the mechanical characteristics of plain and steel fiber high strength concrete under uniaxial and biaxial loading condition. A number of plain and steel fiber high strength concrete cubes having 28 days compression strength of 82.7MPa(12,000 psi) were made and tested. Four principal compression stress ratios ($\sigma_2/\sigma_1$=0.00, 050, 0.75 and 1.00), and four fiber concentrations($V_f$ =0.0, 0.5, 1.0 and $1.5\%$) were selected as major test variables. From test results, it is shown that confinement stress in minor stress direction has pronounced effect on the strength and deformational behavior. Both of the stiffness and ultimate strength of the plain and fiber high strength concrete Increased. The maximum increase of ultimate strength occurred at biaxial stress ratio of 0.5($\sigma_2/\sigma_1=0.5$) in the plain high strength concrete and the value were recorded $30\%$ over than the strength under uniaxial condition. The failure modes of plain high strength concrete under uniaxial compression were shown as splitting type of failure but steel fiber concrete specimens under biaxial condition showed shear type failure. The values of elastic modulus were also examined higher than that from ACI and CEB expression under biaxial compression condition.

Effect of Recycled Coarse Aggregate on Compressive Strength and Mechanical Properties of Concrete (순환굵은골재가 콘크리트의 압축강도 및 역학적 특성에 미치는 영향)

  • Yang, In-Hwan;Jeong, Joon-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.105-113
    • /
    • 2016
  • Most studies on mechanical properties of concrete with recycled aggregate was focused on the concrete with compressive strength of less than 40 MPa. Therefore, this paper concerns the compressive strength and mechanical properties of concrete with compressive strength of greater than 40 MPa containing recycled coarse aggregate (RCA). The experimental parameters were compressive strength level and replacement ratio of RCA. Compressive strength level was 45 and 60 MPa, and replacement ratio of RCA was 30, 50, 70 and 100%. The results of the test were discussed: compressive strength, elastic modulus, split tensile strength and modulus of rupture. Test results of elastic modulus were compared to the design code predictions. The design code predictions for elastic modulus overestimated the experimental results. However, the design code predictions for modulus of rupture were generally in agreement with the measured values.

Effect of the Fineness of Fly Ash on the Compressive Strength (플라이애시 입도가 압축강도에 미치는 영향)

  • Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Ahn
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.313-319
    • /
    • 2017
  • In general, various factors such as grain size, chemical composition, amorphous amount, amorphous Si and Al content of fly ash affect the reaction with cement. In this study, we investigate the effect of fly ash particle characteristics on compressive strength. The standard sand was pulverized to a particle size similar to that of fly ash and the compressive strength was measured by blending with the cement as in fly. Using the measured compressive strength results, strength enhancement by cement hydration reaction and strength enhancement by particle filling effect were confirmed. Strength increment by pozzolanic reaction of fly ash was calculated by using the compressive strength results of mortar substituted with standard powder. As a result of comparison between compressive strengths and the particle characteristics of fly ash, the blaine showed a weak correlation with the compressive strength and the PI(Pozzolanic Index) showed good correlation with the 10% penetration diameter(D10) and the 50% Respectively. Therefore, it is expected that PI will be a good means to evaluate the fly ash characteristics together with the chemical characteristics of fly ash.

An Experimental Research on the Confinement Effect of Concrete Specimens with Spirals (나선근에 의한 콘크리트의 횡보강 효과에 관한 실험적 연구)

  • 김진근;박찬규
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.146-154
    • /
    • 1995
  • I n this paper, an experimental research was carried out to investigate the confinement effect of spiral reinforcements in concrete column specimens subjected to t.he concentric axial corn pressive loads. Main variables were the compressive strengths of concrete of 27.2, 62.4 and 81.2 MPa, and the spacings of spirals of 120, 60, 40, 30, 25 and 20mm. and the yield strengths of spir als of 451 and 1375MPa, respectively. For the same volumetric ratio and yield strength of spir als, it was shown that the strength increment of confined concrete was almost same regardless of the strength of unconfined concrete, however, the axial stram at maximum stress was decreas ed with increasing of the compressive strength of unconfined concrete.