DOI QR코드

DOI QR Code

Effect of the Fineness of Fly Ash on the Compressive Strength

플라이애시 입도가 압축강도에 미치는 영향

  • 조영근 (한국건설생활환경시험연구원) ;
  • 김호규 (한국건설생활환경시험연구원) ;
  • 김영안 (하나케이텍 기술연구소)
  • Received : 2017.08.30
  • Accepted : 2017.09.01
  • Published : 2017.09.30

Abstract

In general, various factors such as grain size, chemical composition, amorphous amount, amorphous Si and Al content of fly ash affect the reaction with cement. In this study, we investigate the effect of fly ash particle characteristics on compressive strength. The standard sand was pulverized to a particle size similar to that of fly ash and the compressive strength was measured by blending with the cement as in fly. Using the measured compressive strength results, strength enhancement by cement hydration reaction and strength enhancement by particle filling effect were confirmed. Strength increment by pozzolanic reaction of fly ash was calculated by using the compressive strength results of mortar substituted with standard powder. As a result of comparison between compressive strengths and the particle characteristics of fly ash, the blaine showed a weak correlation with the compressive strength and the PI(Pozzolanic Index) showed good correlation with the 10% penetration diameter(D10) and the 50% Respectively. Therefore, it is expected that PI will be a good means to evaluate the fly ash characteristics together with the chemical characteristics of fly ash.

일반적으로 플라이애시의 입도, 화학성분, 비정질양, 비정질 Si, Al 양등 매우 다양한 요인이 시멘트와의 반응에 영향을 미치고 있다. 본 연구에서는 플라이애시의 입자 특성이 압축강도에 미치는 영향을 확인하고자 한다. 표준사를 플라이애시와 유사한 입도로 분쇄하여 플라이애시와 동일하게 시멘트와 배합하여 압축강도를 측정하였다. 측정된 압축강도 결과 값을 사용하여 시멘트 수화반응에 의한 강도와 입자 충진 효과에 의한 강도 증진을 확인하였다. 표준사 분말을 치환한 모르타르의 압축강도 결과를 활용하여 플라이애시의 포졸란 반응에 의한 강도 증가분을 계산하였다. 이러한 결과 값과 플라이애시의 입자 특성을 비교한 결과, 분말도는 압축강도와 약한 상관성을 보이고 있으며, PI(Pozzolanic Index)는 10% 통과직경(D10)과 50% 통과직경(D50)과 좋은 상관관계를 나타내었다. 따라서 향후 PI와 D10과의 상관성은 플라이애시의 화학적 특성과 함께 플라이애시 특성을 파악하는 좋은 수단이 될 것으로 판단된다.

Keywords

References

  1. Baert, G., Hoste, S., De Schutter, G., De Belie, N. (2008). Reactivity of fly ash in cement paste studied by means of thermogravimetry and isothermal calorimetry, Journal of Thermal Analysis and Calorimetry, 94, 485-492. https://doi.org/10.1007/s10973-007-8787-z
  2. Bentz, D.P. (2006). Influence of water-to-cement ratio on hydration kinetics: simple models based on spatial considerations, Cement and Concrete Research, 36(2), 238-244. https://doi.org/10.1016/j.cemconres.2005.04.014
  3. Blaschke, R. (1985). Zur Einbindung der Flugasche in den Bindemittelstein, in : VGB - Sondertagung 1984, VGB - Bericht, Essen, 80-88.
  4. E, Sakai., S, Miyahara., S, Ohsawa., Lee, S.H., M, Daimon. (2005). Hydration of fly ash cement, Cement and Concrete Research, 35, 1135-1140. https://doi.org/10.1016/j.cemconres.2004.09.008
  5. Fraay, A.L.A., Bijen, J.M., de Haan, Y.M. (1989). The reaction of fly ash in concrete a critical examination, Cement and Concrete Research, 19(2), 235-246. https://doi.org/10.1016/0008-8846(89)90088-4
  6. Gartner, E. (2003). Industrially interesting approaches to "Low-$CO_2$" cements, Cement and Concrete Research, 34(9), 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021
  7. Korean Standard Association. (2016). Korean Standard L 5405 Fly ash.
  8. Nath, P., Sarker, P. (2011). Effect of fly ash on the durability properties of high strength concrete, Procedia Engineering, 14, 1149-1156. https://doi.org/10.1016/j.proeng.2011.07.144
  9. S, Hanehara., S, Asano., T, Yamamoto., T, Nozaki. (2009). Characters of recent 16 fly ashes and their compressive strength of fly ash cement, Cement Science and Concrete Technology, 63, 120-126. https://doi.org/10.14250/cement.63.120
  10. T, Yamamoto., T, Kanazu., M, Nambu., T, Tanosaki. (2006). Pozzolanic reactivity of fly ash - API method and K-value, Fuel, 85, 2345-2351. https://doi.org/10.1016/j.fuel.2006.01.034