DOI QR코드

DOI QR Code

Capacity and Length of Compression Lap Splice in Unconfined Concrete of 100MPa and Less Compressive Strength

횡보강근이 없는 100 MPa 이하 콘크리트의 철근 압축이음 강도와 이음길이

  • Chun, Sung-Chul (Dept. of Architectural Engineering, Mokpo National University) ;
  • Lee, Sung-Ho (Architectural Technology Research Team, Daewoo Institute of Construction Technology, Daewoo E&C Co., Ltd.) ;
  • Oh, Bo-Hwan (Architectural Technology Research Team, Daewoo Institute of Construction Technology, Daewoo E&C Co., Ltd.)
  • Received : 2010.04.05
  • Accepted : 2010.06.07
  • Published : 2010.10.31

Abstract

Although the compression splice needs not be longer than the tension slice due to existence of end bearing, current design codes impose a longer compression lap splice than a tension lap splice in high strength concrete. Hence, new criteria for the compression lap splice including the effects of concrete strength need to be sought for economical design involving ultra-high strength concrete. An experimental study has been conducted with column specimens in concrete strength of 80 and 100 MPa. Test results show that the splice strength can be evaluated to be proportional to square root of compressive strength of concrete. Bar stress developed by end bearing is not affected by splice length and is expressed with a function of the square root of concrete strength. Mean value of stresses developed by end bearing is 16.5 square root of $f_{ck}$. The stresses developed by bond in compression splices are nearly identical to those in tension splices and, therefore, strength increment of compression splices is attributed to end bearing only. From regression analysis of 58 tests, a design equation is proposed for compression lap splice in 40 to 100 MPa of compressive strength of concrete. By the proposed equation, the anomaly of lap lengths in tension and compression is got rid of. In addition, the equation has a reliability equivalent to those of the specified strengths of materials.

현행 설계기준식에 따르면 초고강도 콘크리트에서는 철근 인장이음길이보다 압축이음길이가 더 길어지는 현상이 발생된다. 압축이음은 단부 지압이 존재하므로, 인장이음보다 길 필요는 없다. 초고강도 콘크리트의 경제적 실용화를 위해 합리적인 압축이음강도의 평가가 필요하다. 이를 위해 설계강도 80, 100 MPa 콘크리트를 이용하여 횡보강근이 없는 압축이음 실험을 수행하였다. 실험 결과 압축이음강도는 콘크리트 강도의 제곱근에 비례하는 것으로 평가되었다. 지압에 의해 발현되는 이음강도는 이음길이와 무관하며 콘크리트 강도의 제곱근에 비례하는 것으로 평가되었다. 58개 실험체의 평균은 $16.5\;\sqrt{f_{ck}}$이다. 부착에 의해 발현되는 강도를 ACI 408식으로 평가한 결과 [실험값]/[이론값]의 비는 평균 0.94로, 인장이음의 부착강도와 거의 유사하였다. 따라서 인장이음강도에 대비한 압축이음강도의 향상은 단부 지압효과로 설명될 수 있다. 실험결과에서 분석된 이음길이와 콘크리트 강도의 영향 특성을 고려하여 압축이음강도 평가식과 압축이음길이 설계식을 제안하였다. 제안된 설계식은 통계적 기법에 기반을 두어, 이음부가 철근 재료강도와 동일한 수준의 신뢰성을 확보할 수 있다.

Keywords

References

  1. 한국콘크리트학회, 콘크리트 구조설계기준 해설, 2008, 523 pp.
  2. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary,” ACI, Farmington Hills, Mich., USA, 2008, 465 pp.
  3. 콘크리트 코리아 연구단, http://www.concretecorea.com/.
  4. Chun, S. C., Lee, S. H., and Oh, B., “Compression Lap Splice in Unconfined Concrete of 40 and 60 MPa (5800 and 8700 psi) Compressive Strengths,” ACI Structural Journal, Vol. 107, No. 2, 2010, pp. 170-178.
  5. 천성철, 이성호, 오보환, “횡보강근이 있는 40, 60 MPa 콘크리트에서 철근 압축이음의 거동과 강도,” 콘크리트학회 논문집, 21권, 4호, 2009, pp. 389-400. https://doi.org/10.4334/JKCI.2009.21.4.389
  6. Cairns, J. and Arthur, P. D., “Strength of Lapped Splices in Reinforced Concrete Columns,” ACI Journal, Vol. 76, No. 2, 1979, pp. 277-296.
  7. Comite Euro-International du Beton, CEB-FIP Model Code, London, Thomas Telford, 1990, 437 pp.
  8. Cairns, J., “Strength of Compression Splices: A Reevaluation of Test Data,” ACI Journal, Proceedings, Vol. 82, No. 4, 1985, pp. 510-516.
  9. Orangun, C. O., Jirsa, J. O., and Breen, J. E., “A Reevaluation of Test Data on Developoment Length and Splices,” ACI Journal, Proceedings, Vol. 74, No. 3, 1977, pp. 114-122.
  10. ACI Committee 408, “Bond and Development of Straight Reinforcing Bars in Tension (ACI 408R-03),” ACI, Farmington Hills, Mich., USA, 2003, 49 pp.
  11. KS D 3504 : 2009, 철근콘크리트용 봉강, 산업자원부 기술표준원, 2009, 30 pp.
  12. ISO 6935-2 Steel for the Reinforcement of Concrete - Part 2: Ribbed Bars-Second Edition, International Organization for Standardization, 2007, 20 pp.
  13. Natrella, M. G., Experimental Statistics, National Bureau of Standards Handbook 91, 1966.

Cited by

  1. Design Equations of Compression Splice Strength and Length in Concrete of 100 MPa and Less Compressive Strength vol.23, pp.2, 2011, https://doi.org/10.4334/JKCI.2011.23.2.211