• Title/Summary/Keyword: 압축강도수준

Search Result 328, Processing Time 0.025 seconds

A Novel Method for In Situ Stress Measurement by Cryogenic Thermal Cracking - Concept Theory and Numerical Simulation (저온 열균열 현상을 이용한 초기 응력 측정법 - 개념, 이론 및 수치해석)

  • Ryu, Chang-Ha;Ryu, Dong-Woo;Choi, Byung-Hee;Synn, Dong-Ho;Loui, John P.
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.343-354
    • /
    • 2008
  • A new method is suggested herein to measure the virgin earth stresses by means of a borehole. This novel concept is basically a combination of borehole stress relieving and borehole fracturing techniques. The destressing of the borehole is achieved by means of inducing thermal tensile stresses at the borehole periphery by using a cryogenic fluid such as Liquid Nitrogen($LN_2$). The borehole wall eventually develops fractures when the induced thermal stresses exceed the existing compressive stresses at the borehole periphery in addition to the tensile strength of the rock. The above concept is theoretically analyzed for its potential applicability to interpret in situ stress levels from the tensile fracture stresses and the corresponding borehole wall temperatures. Coupled thermo-mechanical numerical simulations are also conducted using FLAC3D, with thermal option, to check the validity of the proposed techniques. From the preliminary theoretical and numerical analysis, the method suggested for the measurement of in situ stresses appears to be capable of accurate estimation of the virgin stresses by monitoring tensile crack formation at a borehole wall and recording the wall temperatures at the time of crack initiation.

An Experimental Study on the Drying Shrinkage of Concrete Using High-Quality Recycled Sand (고품질 순환잔골재를 사용한 콘크리트의 건조수축 특성에 관한 실험적 연구)

  • Song, Ha-Young;Lee, Sang-Soo;Lee, Do-Heun;Lee, Jong-Gou;Kim, Jae-Hwan;Lim, Hyon-Ung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.136-143
    • /
    • 2006
  • In this study, recently it is urgently required that demolition waste concrete has to be recycled on the construction because urban development is accelerated and redevelopment project is rapidly expanded, production quantity of construction and demolition waste concrete is being increased. As a results of drying shrinkage test under restrained and unrestrained condition, although workability and mechanical properites of concrete using HQRS were similar to that of concrete using natural sand, there were a great difference in deformation characteristic of dry shrinkage according to replacement ratio of HQRS. And, it makes sure that use of HQRS instead of partial nature sand was effective because drying shrinkage of concrete using 30 volume percentage of HQRS was smaller than that using only natural sand. Therefore, it is the objective of this study to provide the fundamental data about the re-application as an analysis of the drying shrinkage characteristics of concrete using HQRS and it is able to creta a high value-added by using HQRS.

  • PDF

Strength Safety Study on the Stress Characteristics of a Composite Pressure Cylinder for 35MPa Hydrogen Gas Vehicle (35MPa 수소가스 자동차용 복합소재 압력용기의 응력특성에 관한 강도안전성 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.25-30
    • /
    • 2012
  • This paper presents a stress safety of a composite pressure cylinder in which is composed of an aluminum liner and composite layers with carbon fiber/epoxy and glass fiber/epoxy resigns. The composite pressure cylinder for a hydrogen gas vehicle contains 9.2 liter hydrogen gas, and hydrogen gases are compressed by a filling pressure of 35MPa. The FEM computed results are analyzed based on the US DOT-CFFC basic requirement for a hydrogen gas cylinder and KS B ISO specification. The FEM results indicate that the stress, 247MPa of an aluminum liner is sufficiently low compared with that of 272MPa, which is 95% level of a yield stress for aluminum. And, the carbon fiber composite layers in which are wound on the surface of an aluminum cylinder are safe because the maximum carbon fiber stresses from 29.43% to 28.87% in hoop and helical directions are below 30% for a given minimum required burst pressure level, respectively. The carbon fiber composite layers are also safe because the stress ratios from 3.40 to 3.46 in hoop and helical directions are above 2.4 for a minimum safety level, respectively.

Effect of Alkali Treatment Method and Concentration of Rice Straw on the Flexural Properties and Impact Strength of Rice Straw/Recycled Polyethylene Composites (볏짚/재활용폴리에틸렌 복합재료의 굴곡특성 및 충격강도에 미치는 볏짚의 알칼리처리 방법 및 농도의 영향)

  • Lee, Ki Young;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.20 no.3
    • /
    • pp.87-95
    • /
    • 2019
  • In the present study, the effect of alkali treatment of rice straw on the flexural properties and impact strength of rice straw/recycled polyethylene composite was investigated. Alkali treatments were performed by means of two different methods at various sodium hydroxide (NaOH) concentrations. One is static soaking method and the other is dynamic shaking method. The composites were made by compression molding technique using rice straw/recycled polyethylene pellets produced by twin-screw extrusion process. The result strongly depends on the alkali treatment method and concentration. The shaking method done with a low concentration of 1 wt% NaOH exhibits the highest flexural and impact properties whereas the soaking method done with a high concentration of 10 wt% NaOH exhibits the highest properties, being supported qualitatively by the fiber-matrix interfacial bonding of the composites. The properties between the two highest property cases above-described are comparable each other. The study suggests that such a low concentration of 1 wt% NaOH may be used for alkali treatment of natural fibers to improve the flexural and impact properties of resulting composites, rather than using high concentrations of NaOH, 10 wt% or higher. Considering of environmental concerns of alkali treatment, the shaking method is preferable to use.

Analysis of the Reinforcement Effect of Aging Reservoir Reinforced by Environmental Soil Stabilizer as Chemical Grouting Material (친환경 지반안정재를 약액주입재로 사용하여 보강한 노후 저수지의 보강효과 분석)

  • Kim, Se-Min;Seo, Se-Gwan;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.1-11
    • /
    • 2021
  • In this study, a study related to laboratory and pilot test were performed to use an environmental soil stabilizer developed to induce a hardening reaction similar to that of Ordinary Portland Cement (OPC) by using industrial by-products of blast furnace slag and the combustion ash of a circulating fluidized bed boiler as the main material. For this, specimens were prepared using liquid A of sodium silicate and silica sol, and liquid B of an environmental soil stabilizer (or OPC), and laboratory tests were performed to analyze the strength and environmental characteristics. And pilot test was performed on the aging reservoir, field permeability test and electrical resistivity survey were performed in the field to analyze the applicability. As a result of the laboratory test, the homo-gel compressive strength of the chemical injection material using the environmental soil stabilizer as liquid B was about 2.88 to 3.23 times greater than that of OPC. In addition, the elution amount of most heavy metals was lower than that of OPC, and the survival rate in the fish, acute toxicity test was 100%. Therefore, when judged based on the results of the laboratory test, it was analyzed to be superior to OPC in terms of strength and environment. In the results of the pilot test in the aging reservoir, when the environmental soil stabilizer was reinforced with liquid B of the chemical injection material, the coefficient of permeability in the aging reservoir decreased to 1/50 level. In addition, as a result of the electrical resistivity survey, it was analyzed that the electrical resistivity inside the aging reservoir increased as time passed, the saturation zone disappeared, and the overall reinforcement.

An Experimental Study on the Mechanical Healing Properties of Self-Healing Mortar with Solid Capsules Using Crystal Growth Type Inorganic Materials (결정성장형 무기재료 활용 고상 캡슐을 혼합한 자기치유 모르타르의 역학적 치유 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Nam, Eun-Joon;Oh, Sung-Rok;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.581-589
    • /
    • 2020
  • In this paper, a solid capsule was prepared using a crystal growth type inorganic material capable of hydration reaction, the quality and mechanical healing properties of self-healing mortar with solid capsules were evaluated. Solid capsules were mixed 5% by mass of cement. Reloading test results of compressive load, it was found to improve about 20% on average for the natural healing effect of Plain, in the case of the elastic range, the healing rate was about 79% at the 7 days of healing age and 98% at the 28 days of healing age. Reload test results of flexural load, in the case of the elastic range, the healing rate was about 79% at the 7 days of healing age and 98% at the 28 days of healing age. Through these results, it is judged that the healing performance of solid capsules has also an effect on mechanical healing properties such as strength in addition to the durability properties obtained by the permeability test. Since the strength tends to decrease as the solid capsules are mixed, it is considered necessary to compensate.

The Development of Steel-plate Concrete Panels with Preplaced Lightweight Aggregates Concrete (프리플레이스트 경량골재 콘크리트를 사용한 합성형 구조모듈 제작 및 성능 평가)

  • Yoon, Jin Young;Kim, Jae Hong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • The steel-plate concrete(SC) is used in a form of module assembly construction in the outer wall of nuclear-power plant and LNG containment. Since the steel-plate concrete modules are generally manufactured from the plant, the weight of SC has significantly effect on the total construction cost in the aspect of shipment. Therefore, the use of lightweight aggregates concrete(LWAC), which fill the inside of SC module can be a solution. However, the amount of used lightweight aggregates(LWA) is limited in the use of current concrete mixing process due to the concrete quality problems and it also determines the allowable minimum density of LWAC. In this research, the preplaced casting method is applied because of increasing the volume fraction of LWA significantly, which results from the producing process of pre-packing the LWA in the formwork and filling the interstitial voids between LWA using cement paste grout. The density and compressive strength of selected preplaced LWAC were $1,600kg/m^3$ and 30MPa and it was applied for the mock-up specimens of SC panel. It was used for the 3-point bending test for evaluating its structural performance. The results show that the preplaced LWAC can reduce the density of concrete with the adequate mechanical and structural performance.

Evaluation of Chloride Diffusion Characteristics in Concrete with Fly Ash Cured for 2 Years (2년 양생된 Fly Ash 콘크리트의 염화물 확산 특성 평가)

  • Yoon, Yong-Sik;Hwang, Sang-Hyeon;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.8-15
    • /
    • 2019
  • When RC(Reinforced Concrete) structures are exposed to harsh environment, deterioration phenomenon occurs, and the corrosion in rebar due to chloride intrusion is known as representative deterioration, so called chloride attack. In this paper, chloride resistance performance of 2 years aged concrete is evaluated considering 3 levels of water to binder ratio(0.37, 0.42, and 0.47) and 2 levels of substitution ratio of fly ash(0% and 30%). Accelerated chloride diffusion coefficient tests referred to Tang's method, total passed charge tests referred to ASTM C 1202, and compressive strength tests referred to KS F 2405 are performed. With adaptation of the previous test results and the results from this study, time-dependent chloride diffusion characteristics are analyzed for each concrete. The FA(Fly Ash) concrete has higher chloride resistance performance than OPC(Ordinary Portland Cement) concrete. According to the evaluation standard of ASTM C 1202, the FA concrete has "Moderate" grade after 49 days while OPC concrete does "Moderate" grade after 365 days. As the results of time-parameter for chloride diffusion, OPC concrete and FA concrete show the decreasing behavior of time-parameters with increasing water to binder ratio. Also, FA concrete has 1.57~2.74 times of time-parameter than OPC concrete. That's cause is thought that the time-parameter indicates the gradient of decreasing of diffusion coefficient. FA concrete has higher time-parameters than OPC concrete by pozzolanic reaction of FA.

Magnesium Sulfate Resistance of Geopolymer Incorporating Evaporated Rice Husk Powder (증해추출 왕겨분말을 혼입한 지오폴리머의 황산마그네슘 저항성에 관한 연구)

  • Cho, Seung-Bi;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.663-672
    • /
    • 2022
  • The purpose of this study is to evaluate the magnesium sulfate resistance of a geopolymer mixed with rice husk powder. General concrete, silica fume mixed concrete, and binary blended geopolymer were selected as comparison targets to confirm the magnesium sulfate resistance, and sulfate deterioration was calculated using the compressive strengths with ages. In addition, the weight change rate and the relative dynamic coefficient of the geopolymer were comparatively analyzed, and the degree of etteringite formation was confirmed using X-ray diffraction analysis. the experiment, the geopolymer mixed with 10% rice husk powder showed 10.8% higher compressive strength than concrete with silica fume when submerged for 56 days. Also, the geopolymer mixed with rice husk powder showed a small weight change rate of 0.9 to 1.45%. composition after immersion in magnesium sulfate through X-ray diffraction analysis, it was observed that a small amount of ettringite was dispersed in the geopolymer containing rice husk powder. Thus, there is a high correlation with the corrosion resistance of magnesium sulfate

Physical and Mechanical Properties on Ipseok-dae Columnar Joints of Mt. Mudeung National Park (무등산국립공원 입석대 주상절리대에 대한 물리역학적 특성)

  • Ko, Chin-Surk;Kim, Maruchan;Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.383-392
    • /
    • 2016
  • This study is to evaluate the physical and mechanical properties on the Ipseok-dae columnar joints of Mt. Mudeung National Park. For these purposes, physical and mechanical properties as well as discontinuity property on the Mudeungsan tuff, measurement of vibration and local meteorology around columnar joints, and ground deformation by self-weight of columnar joints were examined. For the physical and mechanical properties, average values were respectively 0.65% for porosity, 2.69 for specific gravity, 2.68 g/cm3 for density, and 2411 m/s for primary velocity, 323 MPa for uniaxial compressive strength, 81 GPa Young's modulus, and 0.25 for Poisson's ratio. For the joint shear test, average values were respectively 3.15 GPa/m for normal stiffness, 0.38 GPa/m for shear stiffness, 0.50 MPa for cohesion, and 35° for internal friction angle. The JRC standard and JRC chart was in the range of 4~6, and 1~1.5, respectively. The rebound value Q of silver schmidt hammer was 57 (≒ 90 MPa). It corresponds 20% of the uniaxial compressive strength of intact rock. The maximum vibration value around the Ipseok=dae columnar joints was in the range of 0.57 PPV (mm/s)~2.35 PPV (mm/s). The local meteorology of surface temperature, air temperature, humidity, and wind on and around columnar joints appeared to have been greatly influenced the weather on the day of measurement. For the numerical analysis of ground deformation due to its self-weight of the Ipseok-dae columnar joints, the maximum displacement of the right ground shows when the ground distance is approximately 2 m, while drastically decreased by 2~4 m, thereafter was insignificant. The maximum displacement of the middle ground shows when the ground distance is approximately 0~2 m, while drastically decreased by 3~10 m, thereafter was insignificant. The maximum displacement of the left ground shows when the ground distance is approximately 5~6 m, while drastically decreased by 6~10 m, thereafter was insignificant.