DOI QR코드

DOI QR Code

Evaluation of Chloride Diffusion Characteristics in Concrete with Fly Ash Cured for 2 Years

2년 양생된 Fly Ash 콘크리트의 염화물 확산 특성 평가

  • Yoon, Yong-Sik (Department of Civil and Environmental Engineering, Hannam University) ;
  • Hwang, Sang-Hyeon (Department of Civil and Environmental Engineering, Hannam University) ;
  • Kwon, Seung-Jun (Department of Civil and Environmental Engineering, Hannam University)
  • 윤용식 (한남대학교 토목환경공학과) ;
  • 황상현 (한남대학교 토목환경공학과) ;
  • 권성준 (한남대학교 토목환경공학과)
  • Received : 2018.11.27
  • Accepted : 2019.02.21
  • Published : 2019.03.30

Abstract

When RC(Reinforced Concrete) structures are exposed to harsh environment, deterioration phenomenon occurs, and the corrosion in rebar due to chloride intrusion is known as representative deterioration, so called chloride attack. In this paper, chloride resistance performance of 2 years aged concrete is evaluated considering 3 levels of water to binder ratio(0.37, 0.42, and 0.47) and 2 levels of substitution ratio of fly ash(0% and 30%). Accelerated chloride diffusion coefficient tests referred to Tang's method, total passed charge tests referred to ASTM C 1202, and compressive strength tests referred to KS F 2405 are performed. With adaptation of the previous test results and the results from this study, time-dependent chloride diffusion characteristics are analyzed for each concrete. The FA(Fly Ash) concrete has higher chloride resistance performance than OPC(Ordinary Portland Cement) concrete. According to the evaluation standard of ASTM C 1202, the FA concrete has "Moderate" grade after 49 days while OPC concrete does "Moderate" grade after 365 days. As the results of time-parameter for chloride diffusion, OPC concrete and FA concrete show the decreasing behavior of time-parameters with increasing water to binder ratio. Also, FA concrete has 1.57~2.74 times of time-parameter than OPC concrete. That's cause is thought that the time-parameter indicates the gradient of decreasing of diffusion coefficient. FA concrete has higher time-parameters than OPC concrete by pozzolanic reaction of FA.

콘크리트 구조물이 극심한 열화 환경에 노출되는 경우 열화현상이 발생하게 되는데, 대표적인 열화 현상으로는 염해에 의한 철근부식이 있다. 본 연구에서는 3가지 수준의 물-결합재 비(0.37, 0.42, 0.47) 및 2가지 수준의 플라이애시 치환율(0%, 30%)을 고려하여 재령 2년 콘크리트 시편을 대상으로 염해 저항 성능을 평가하였다. Tang's method에 준하여 촉진 염화물 확산계수를, ASTM C 1202에 준하여 통과 전하량을, KS F 2405에 준하여 압축강도를 평가하였다. 또한 기존의 제안식들과 촉진 염화물 확산계수 결과를 활용하여 각 배합의 시간의존성 확산 특성을 분석하였다. 플라이애시 혼입 배합은 OPC 배합 대비 뛰어난 내구성능을 나타내는데, 통과 전하량 평가기준에 따르면 재령 49일부터 "Moderate" 등급 이하에 포함되는 반면 OPC 배합은 재령 1년에서야 모든 물-결합재 비에서 "Moderate" 등급 이하에 포함되었다. 각 배합의 시간의존성지수를 도출한 결과 모든 배합에서 물-결합 재비가 증가함에 따라 시간의존성지수가 감소하는 경향을 나타내었다. 또한, 플라이애시 혼입 배합에서 OPC 배합 대비 1.57배~2.74배의 시간의존성지수가 평가되었다. 이는 시간의존성지수가 확산계수가 감소하는 기울기를 나타내기 때문이며, 플라이애시의 포졸란 반응에 의해 FA 배합에서 OPC 배합 대비 높은 시간의존성지수를 나타내었다.

Keywords

GSJHDK_2019_v7n1_8_f0001.png 이미지

Fig. 1. Mimetic diagram and test condition for Tang’s method

GSJHDK_2019_v7n1_8_f0002.png 이미지

Fig. 2. Test results for diffusion coefficient considering W/B and substitution ratio of FA

GSJHDK_2019_v7n1_8_f0003.png 이미지

Fig. 3. Decreasing ratio in accelerated diffusion coefficient by curing effect

GSJHDK_2019_v7n1_8_f0004.png 이미지

Fig. 4. Test results for passed charge considering W/B and substitution ratio of FA

GSJHDK_2019_v7n1_8_f0005.png 이미지

Fig. 5. Decreasing ratio in passed charge by curing effect

GSJHDK_2019_v7n1_8_f0006.png 이미지

Fig. 6. Test results for compressive strength considering W/B and substitution ratio of FA

GSJHDK_2019_v7n1_8_f0007.png 이미지

Fig. 7. Increasing ratio in compressive strength by curing effect

GSJHDK_2019_v7n1_8_f0008.png 이미지

Fig. 8. Results for time-parameter by regression analysis

GSJHDK_2019_v7n1_8_f0009.png 이미지

Fig. 9. Comparative evaluation of time-parameter

Table 1. Concrete mixture for this study

GSJHDK_2019_v7n1_8_t0001.png 이미지

Table 2. Properties of sand and gravel

GSJHDK_2019_v7n1_8_t0002.png 이미지

Table 3. Properties of super plasticizer

GSJHDK_2019_v7n1_8_t0003.png 이미지

Table 4. Evaluation standard for chloride resistance by ASTM C 1202

GSJHDK_2019_v7n1_8_t0004.png 이미지

References

  1. ASTM C 1202. (2005). Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, American Society for Testing and Materials.
  2. Berke, N.S., Hicks, M.C. (1994). Predicting chloride profiles in concrete, CORROSION, 50(3), 234-239. https://doi.org/10.5006/1.3293515
  3. KCI. (1996). Latest Concrete Engineering, Kimoondang, Seoul, 453-459 [in Korean].
  4. Kim, H.J. (2010). A Study on the Development of Functional Concrete Using Permeating Agents and Photocatalyst, Ph.D Thesis, Jeonbuk University [in Korean].
  5. KS L 5405. (2016). Fly Ash, Korea Standard Service Network, 1-8 [in Korean].
  6. Kwon, S.O., Bae, S.H., Lee, H.J., Jung, S.H. (2014). Characteristics for reinforcement corrosion and chloride ion diffusion of high volume fly ash concrete, Journal of the Korean Recycled Construction Resources Institute, 2(1), 34-39 [in Korean]. https://doi.org/10.14190/JRCR.2014.2.1.034
  7. Lee, J.W., Kim, K.M., Bae, Y.K., Lee, J.S. (2004). "Study on the field application according to the early strength of the concrete admixed with polycarboxylate superplasticizer," Korea Concrete Institute Academic Conference, Korea Concrete Institute, Pyoengchang, Korea, 200-203 [in Korean].
  8. Lee, S.H., Kwon, S.J. (2012). Experimental study on the relationship between time-dependent chloride diffusion coefficient and compressive strength, Journal of the Korea Concrete Institute, 24(6), 715-726 [in Korean]. https://doi.org/10.4334/JKCI.2012.24.6.715
  9. Metha, P.K., Monteiro, P.M. (2009). Concrete-Structure, Properties, and Materials, 2nd Edition, Prentice Hall, New-Jersey, 1-7, 271-284.
  10. Nath, P., Sarker, P. (2011). Effect of fly ash on the durability properties of high strength concrete, Procedia Engineering, 14, 1149-1156. https://doi.org/10.1016/j.proeng.2011.07.144
  11. Oh, K.S., Moon, J.M., Park, K.T., Kwon, S.J. (2016). Evaluation of load capacity reduction in RC beam with corroded FRP hybrid bar and steel, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(2), 10-17 [in Korean]. https://doi.org/10.11112/JKSMI.2016.20.2.010
  12. Park, K.C., Lim, N.G. (2015). Chloride penetration of concrete mixed with high volume fly ash and blast furnace slag, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(1), 90-99 [in Korean]. https://doi.org/10.11112/jksmi.2015.19.1.090
  13. Polder, R.B., van der Wegen, G., Boutz, M. (2007). "Performance based guideline for service life design of concrete for civil engineering structures - a proposal discussed in the netherlands," International RILEM Workshop on Performance Based Evaluation and Indicators for Concrete Durability, Madrid, Spain, 31-39.
  14. SERI. (2003). Evaluation of Chloride Ion Diffusion Characteristics of High Durability Concrete, Samsung Engineering Research Institute, Final report [in Korean].
  15. Tang, L., Nilsson, L.O. (1992). Rapid determination of the chloride diffusivity in concrete by applying an electrical field, ACI Materials Journal, 89(1), 49-53.
  16. Thomas, M.D.A., Bentz, E.C. (2002). Computer Program for Predicting the Service Life and Life-cycle Costs of Reinforced Concrete Exposed to Chlorides, Life 365 Manual, SFA, 2-28.
  17. Yoo, J.G. (2010). Durability Design of Concrete and Evaluation of Field Application on Reinforced Concrete Structure Exposed to Marine Environment, Ph.D Thesis, Chungnam University [in Korean].
  18. Yoon, Y.S., Kwon, S.J. (2018). Evaluation of time-dependent chloride resistance in HPC containing fly ash cured for 1 year, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(4), 52-59 [in Korean]. https://doi.org/10.11112/JKSMI.2018.22.4.052
  19. Yoon, Y.S., Ryu, H.S., Lim, H.S., Koh, K.T., Kim, J.S., Kwon, S.J. (2018). Effect of grout conditions and tendon location on corrosion pattern in PS tendon in grout, Construction and Building Materials, 186(2018), 1005-1015. https://doi.org/10.1016/j.conbuildmat.2018.08.023