• Title/Summary/Keyword: 압밀응력

Search Result 278, Processing Time 0.039 seconds

Characteristics of Undrained Cyclic Shear Behavior of Nak-Dong River Sand by Silt Contents (실트질 함유량에 따른 낙동강 모래의 비배수 반복전단거동 특성)

  • Kim, Young-Su;Kim, Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.79-89
    • /
    • 2008
  • In this study, a series of undrained cyclic triaxial tests were performed with three different consolidation stress ratios ($K_c$=1.0, 1.5, 2.0) to investigate the undrained shear strength characteristics of sands with respect to the amount of contained silt located around the basin of Nak-dong River. The test results show that the more the sand has silt, the lower is cyclic shear stress ratio (CSR) in all $K_c$ and that the higher $K_c$ goes, the larger CSR decreases due to the increase of contained silt. The excessive pore pressure caused during shearing has an influence on the decrease of CSR by the high initial pore pressure in proportion to the amount of contained silt regardless of the $K_c$ value. After consolidation, the analysis of the skeleton void ratio of the sample reveals that the main cause of the decrease of CSR as well as the increase of the initial excessive pore pressure is the increase of the skeleton void ratio in proportion to the amount of contained silt.

Effect of Gravel Size on Shear Behavior of Sand with Dispersed Gravels (모래 지반 내에 포함된 자갈의 크기가 전단거동에 미치는 영향)

  • Park, Sung-Sik;Kim, Young-Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.39-51
    • /
    • 2011
  • A large number of small particles may surround large gravels which are non-contact and dispersed within the ground. The strength of such soil may be influenced by the mechanical properties of a few coarse gravels. A specimen or gravel size can impact the shear characteristics of sand with dispersed gravels. In this study, the size of gravel and specimen varies and its effect on shear characteristics of a granular soil was evaluated. Five sizes of gravels with 7, 12, 15, 18, and 22 mm were used repeatedly and inserted in the middle of each compacted layer. A specimen consists of five or ten equal layers depending on gravel size, which is 5 cm or 10 cm in diameter and 10 cm or 20 cm in height. An embedded gravel ratio by weight is 3% and constant for all cases with gravel. After consolidation, a series of undrained triaxial compression tests under three confining pressures was performed on sand with dispersed gravels. The maximum deviator stress of a specimen with 10 cm in diameter was at average 30% higher than that with 5 cm in diameter and increased up to 90% for a specimen with gravel. When a gravel size of 7 and 12 mm used, the maximum deviator stress of a specimen with 10 cm in diameter was higher than that of one without gravel, whereas the maximum deviator stress of a specimen with 5 cm was higher or lower than that without gravel. The gravel size and specimen diameter influenced the undrained behavior of sand. The maximum deviator stress of a specimen with gravel either increased or decreased compared to that without gravel, depending on the ratio of gravel size to specimen diameter, 1/5.

Undrained Shear Behavior of Sand with Dispersed Gravels (자갈이 포함된 모래의 비배수 전단거동)

  • Park, Sung-Sik;Kim, Young-Su;Sung, Hee-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5C
    • /
    • pp.209-218
    • /
    • 2010
  • In residual soils, large particles such as rock fragments or gravel are surrounded by sand or clay. The strength of such granular mixtures can be controlled by the concentration of fine or coarse grains. The percentage by weight, size or shape of gravel in the mixture that can control the strength of the mixture has not been clearly determined for various granular mixtures. In this study, the effect of dispersed gravels on the shear characteristics of sand was evaluated. Large and small gravels were inserted in the middle of each layer with moist Nakdong River sand and compacted into a cylindrical sample with five equal layers. Embedded gravel ratios by weight were 0, 3, 9, and 14%. After consolidation, a series of undrained triaxial compression tests was performed on Nakdong River sand with dispersed gravels. Maximum deviator stresses of the Nakdong River sand with large gravels decrease up to 38% as a percentage of embedded gravels increases. Such strength degradation decreases as a confining pressure increases. The maximum deviator stress increases as the percentage by weight of small gravel increases; at 3 or 9% of gravel weight it slightly increases but at 14% of gravel weight it increases up to 34%.

Determination of Optimum Stepped Vacuum Pressure and Settlement for IVPM-applied Ground (개별진공압공법이 적용된 지반의 최적 단계진공압 산정 및 침하예측)

  • Yoon, Myung-Seok;Ahn, Dong-Wook;Park, Jea-Man;Kim, Soo-Sam
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.163-170
    • /
    • 2011
  • Individual Vacuum Pressure Method (IVPM) is a soft ground improvement technique, in which a vacuum pressure can be directly applied to the vertical drain board to promote consolidation and to strengthen the soft ground. This method does not require surcharge loads, different to embankment or pre-loading method. In this study, the ground improvement efficiency of Individual Vacuum Pressure Method was estimated when suction pressure increases step by step(-20, -40, -60, -80kPa) with different periods. During Individual Vacuum Pressure Method process, surface settlement and pore pressure were monitored, and cone resistance as well as water content were also measured after the completion of Individual Vacuum Pressure Method treatment. From the results, optimum duration of each step of vacuum pressure was determined, and the settlement was calculated using FEM numerical analysis.

Study on the effect of tail void grouting on the short- and long-term surface settlement in the shield TBM Tunneling using numerical analysis (쉴드TBM터널에서 뒤채움 주입이 지반의 단기·장기 침하에 미치는 영향에 대한 수치해석적 연구)

  • Oh, Ju-Young;Park, Hyunku;Kim, Dohyoung;Chang, Seokbue;Lee, Seungbok;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.265-281
    • /
    • 2017
  • For shallow tunnel constructions, settlement of the ground surface is a main issue. Recent technical developments in shield TBM tunneling technique have enabled a decrease in such settlements based on tunneling with ground deformation controls. For this objective, the tail void grouting is a common practice. Generally surface settlements in a soil of low permeability occur during a tunnel construction but also during a long period after completion of the tunnel. The long-term settlements occur mainly due to consolidation around the tunnel. The consolidation process is caused and determined by the tail void grouting which leads to an excess pore water pressure in the vicinity of the tunnel. Because of this, the grouting pressure has a strong effect on the long-term settlements in the shield tunneling. In order to investigate this effect, a series of coupled hydro-mechanical 3D finite element simulations have been performed. The results show that an increase in grouting pressure reduces the short-term settlements, but in many cases, it doesn't lead to a reduction of the final settlements after the completion of consolidation. Thereby, the existence of a critical grouting pressure is identified, at which the minimal settlements are expected.

Estimation of Coefficient of Earth Pressure At Rest During SCP Installation by Drained Triaxial Compression Test (배수삼축압축시험을 통한 SCP 시공과정 중 정지토압계수 평가)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.93-101
    • /
    • 2012
  • SCP is a construction method that maximizes the effects of ground improvement by creating sand piles, which are formed by the compaction within soft ground. SCP is mainly used for consolidation and drain effects in clayey soils, and as a liquefaction countermeasure through effects such as compaction in loose sandy soils. In the design of SCP, if the sand piles with high stiffness are not taken into account, it can become a design that overly considered safety, and increased construction costs are highly likely to cause economic disadvantages. The changes in stress conditions and compaction mechanisms in the subsurface have been identified to a certain extent by study findings to date. However, the studies that considered SCP and in-situ ground as composite ground are fairly limited, and therefore, those studies have not achieved enough results to fully explain the relevant topics. In this study, the ground improved by SCP was regarded as the composite ground that consists of SCP and in-situ ground. Moreover, employing a CID test, this study examined the changes in the stress conditions of in-situ ground according to the installation of SCP through the relations between $K_0$ and SCP replacement ratio. At the same, whether the SCP installation procedure can be recreated in a laboratory was examined using a cyclic triaxial test. According to the test results, the changes in the stress conditions of the original ground occurred most largely in an initial stage of SCP installation, and after a certain time point, the vibration for SCP installation did not have a great influence on the changes in the stress conditions of the ground. Moreover, in order to recreate the behaviors of in-suit ground according to SCP in a laboratory, cyclic loading, which corresponds to casing vibration, was concluded to be essentially required.

Characteristics of Rigid-Soft Particle Mixtures with Size Ratio (입자크기비에 따른 강-연성 혼합재의 공학적 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Rae-Hyun;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.125-135
    • /
    • 2008
  • Rigid-soft particle mixtures, which consist of sand and rubber, are investigated for the understanding of the stress-deformation and elastic moduli. Specimens are prepared with various size ratio sr between sand and rubber particles, and different volumetric sand fraction sf. Small strain shear waves are measured under $K_o$-loading condition incorporated with the stress-deformation test by using oedometer cell with bender elements. The stress-deformation and small strain shear wave characteristics of rigid-soft particle mixtures show the transition from a rigid particle behavior regime to a soft particle behavior regime under fixed size ratio. A sudden rise of $\Lambda$ factor and the maximum value of the $\zeta$ exponent in $G_{max}=\;{\Lambda}({\sigma}'_{o}/kPa)^{\zeta}$ are observed at $sf\;{\approx}\;0.4{\sim}0.6$ regardless of the size ratio sf. Transition mixture shows high sensitivity to confining stress. The volume fraction for the minimum porosity may depend on the applied stress level in the rigid-soft particle mixtures because the soft rubber particles easily distort under load. In this experimental study, the size ratio and volumetric sand fraction are the important factors which determine the behavior of rigid and soft particle mixtures.

Correction for Membrane Penetration Effect during Isotropic Unloading and Undrained Cyclic Shear Process (등방제하과정과 반복전단과정에서의 멤브레인 관입량 및 보정식에 대한 실험적 고찰)

  • Kwon, Youngcheul;Bae, Wooseok;Oh, Sewook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.201-207
    • /
    • 2006
  • Soil tests are generally conducted using a membrane to measure a pore water pressure. However, it has also been recognized that the membrane penetrates into the specimen by the change of the confining pressure, and it results in the erroneous measurement in the pore water pressure and the volumetric strain. This study examined the effectiveness of the correction equation of the membrane penetration on the basis of the experimental data acquired during the isotropic unloading and the cyclic shear process using the hollow cylindrical shear test equipment. The results showed that the membrane penetration by the correction equation could be overestimated when the mean effective stress was lower than 20kPa in this study. The limitations originated from the sudden increase near the zero effective stress, and in order to prevent the overestimation in low effective stress condition, the use of the constant a was proposed in this study. Furthermore, the correction equation for the membrane penetration had to be applied carefully when the initial relative density was high and the density changes were occurred by the relocation of the soil particle by the liquefaction.

A Reliability Analysis of Shallow Foundations using a Single-Mode Performance Function (단일형 거동함수에 의한 얕은 기초의 신뢰도 해석 -임해퇴적층의 토성자료를 중심으로-)

  • 김용필;임병조
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.27-44
    • /
    • 1986
  • The measured soil data are analyzed to the descriptive statistics and classified into the four models of uncorrelated-normal (UNNO), uncorrelated-nonnormal (VNNN), correlatedonnormal(CONN), and correlated-nonnormal(CONN) . This paper presents the comparisons of reliability index and check points using the advanced first-order second-moment method with respect to the four models as well as BASIC Program. A sin91e-mode Performance function is consisted of the basic design variables of bearing capacity and settlements on shallow foundations and input the above analyzed soil informations. The main conclusions obtained in this study are summarized as follows: 1. In the bearing capacity mode, cohesion and bearing-capacity factors by C-U test are accepted for normal and lognormal distribution, respectively, and negatively low correlated to each other. Since the reliability index of the CONN model is the lowest one of the four model, which could be recommended a reliability.based design, whereas the other model might overestimate the geotechnical conditions. 2. In the case of settlements mode, the virgin compression ratio and preccnsolidation pressure are fitted for normal and lognormal distribution, respectively. Constraining settlements to the lower ones computed by deterministic method, The CONN model is the lowest reliability of the four models.

  • PDF

Strength and Deformation Characteristics of Geosynthetics-Reinforced Slag Materials (토목섬유로 보강된 슬래그 재료의 전단강도 및 변형 특성)

  • Shin, Dong-Hoon;Lee, Jong-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.27-34
    • /
    • 2009
  • In this paper, characteristics of shear strength and deformation of geosynthetics-reinforced slag materials are described. In order to investigate the effect of geosynthetics on shear strength and deformation behavior of slags, when they are reinforced with geosynthetics or geomat such as PET mat, large triaxial tests were performed under consolidated-drained condition. The materials used in the study are real ones as they are in the field, so that the scale effect of samples disappeared. From the large triaxial tests, it was observed that the stress-strain relationship of geosynthetics-reinforced slags shows relatively small dilatancy and weak tendency of strain hardening, compared with that of slags without reinforcement. The shear strength parameters such as apparent cohesion and internal friction angle increase with PET mat reinforcement, consequently result in about 1.2 (for low confining pressure) to 1.4 (for high confining pressure) times of shear strength of un-reinforced sample. Therefore, the adoption of geomat-reinforced slag layers leads to an increase in the factor of safety for embankment design on soft soil formations.

  • PDF