DOI QR코드

DOI QR Code

Correction for Membrane Penetration Effect during Isotropic Unloading and Undrained Cyclic Shear Process

등방제하과정과 반복전단과정에서의 멤브레인 관입량 및 보정식에 대한 실험적 고찰

  • 권영철 (일본항만공항기술연구소 지반구조부) ;
  • 배우석 (청주대학교 토목환경공학과) ;
  • 오세욱 (영재이엔씨(주))
  • Received : 2006.02.20
  • Accepted : 2006.04.14
  • Published : 2006.05.31

Abstract

Soil tests are generally conducted using a membrane to measure a pore water pressure. However, it has also been recognized that the membrane penetrates into the specimen by the change of the confining pressure, and it results in the erroneous measurement in the pore water pressure and the volumetric strain. This study examined the effectiveness of the correction equation of the membrane penetration on the basis of the experimental data acquired during the isotropic unloading and the cyclic shear process using the hollow cylindrical shear test equipment. The results showed that the membrane penetration by the correction equation could be overestimated when the mean effective stress was lower than 20kPa in this study. The limitations originated from the sudden increase near the zero effective stress, and in order to prevent the overestimation in low effective stress condition, the use of the constant a was proposed in this study. Furthermore, the correction equation for the membrane penetration had to be applied carefully when the initial relative density was high and the density changes were occurred by the relocation of the soil particle by the liquefaction.

유효응력의 산정을 위해 간극수압의 측정이 필수인 지반공학 분야의 실험에서는 멤브레인을 사용하여 구속압과 간극수압의 계측을 실시하지만 구속압의 변화 등에 의해 멤브레인이 공시체 쪽으로 관입하는 현상이 발생하여 체적변형률과 유효응력의 계측치에는 오차가 포함되게 된다. 본 연구에서는 중공비틀림 전단시험장치를 사용하여 등방제하과정과 반복전단과정 및 액상화 후의 재압밀 과정에 있어서의 멤브레인 관입량 및 관입 보정식에 대한 고찰을 실시하였다. 실험 결과, 반복전단에 의해 모래의 유효응력이 20kPa 이하의 낮은 유효응력 조건에서는 보정식에 의한 멤브레인 보정량이 과대평가 되고 있음을 알 수 있으며, 이러한 보정식의 한계는 유효응력이 0에 가까워질 수록 보정량이 급격히 증가하는 것이 원인이다. 본 연구에서는 이러한 점을 감안하여 보정량의 급증을 방지하기 위한 상수의 도입에 대해서도 검토하였다. 이와 더불어 초기 상대밀도가 높거나 액상화 후의 입자 재배열 등의 밀도 변화가 일어나는 경우에도 보정식의 적용에 대한 신중한 검토가 필요하다는 점도 확인하였다.

Keywords

References

  1. 남정만, 홍원표, 이재호 (2001 ) 모래의 삼차원 전단강도 특성. 대한토목학회논문집, 대한토목학회, 제 21권 제 1-C호, pp. 1-8
  2. 남정만, 홍원표, 한중근 (1997) 비틀림 전단시험에 의한 모래의 강도특성. 한국지반공학회지, 한국지반공학회, 제 13권 제 4 호, pp. 149-161
  3. 河上走弘, 永山浩, 古關潤一,佐藤剛司(1999)液狀化過程における豊浦砂の微小変形特性.第34回地盤工硏學究發表會,地盤工學會,pp.411-412
  4. 古關潤一,河上走弘, 永山浩,佐藤剛司(1999)ける豊浦砂の微小変形特性.第34回地盤工學硏究發表會,地盤工學會,pp.409-410
  5. 高田直俊(1982)ゴム膜貫入の影響を考慮した粗粒材の非排水三軸試驗.土と基礎,土質工學會,vol.30,No.12,pp.11-17
  6. 權永哲, 淺野隆司,仙頭紀明,渦岡良介,風間碁樹(2003)液狀化過程における砂の体積彈性係數の拘束圧依存性.土木學會地震工學論文集,土木學會,Vol.27,PN.265,pp.1-8
  7. Bopp, P. A. and Lade, P. V. (1997) Membrane Penetration in Granular Materials at High Pressures. Geotechnical Testing Journal, ASTM, Vol. 20, No.3, pp. 272-278
  8. Choi, J. W. and Ishibashi, I. (1992) An experimental method for determining membrane penetration. Geotechnical Testing Journal, ASTM, Vol. 15, No.4, pp. 413-417 https://doi.org/10.1520/GTJ10258J
  9. Goto, S. (1987) Strength and deformation characteristics ofgranular materials in triaxial tests, Dr. Eng. Thesis, University of Tokyo
  10. Iwasaki T. and Tatsuoka, F. (1977) Effect of grain size and grading on dynamic shear moduli of sands. Soils and Foundations, JSSMFE, Vol. 17, No.3, pp. 19-35 https://doi.org/10.3208/sandf1972.17.3_19
  11. Kiekbush, M. and Schuppener, B. (1977) Membrane penetration and its effect on pore pressures, J of Geotech. Engrg. Div., ASCE, Vol. 103, NO. GT11, pp. 1267-1279
  12. Kwon, Y., Asano, T., Sento, N., Uzuoka, R., and Kazama, M. (2006) Confining pressure-dependency of bulk modulus of sand during liquefaction. Structure engineering and Earthquake engineering, JSCE, Vol. 23, No. 1 (in printing)
  13. Kwon, Y., Kazama, M., Uzuoka R. and Sento N. (2004) An applicability of hybrid-online simulation method on the prediction of the consolidation settlement of soft clay. 15th Southeast Asian Geotech. Conf, SEAGS, Vol. 1, pp. 871-876, Bangkok, Thailand
  14. Lade, P. V. and Hernandez, S. B. (1977) Membrane penetration effects in undrained tests. J. of Geotech. Engrg. Div., ASCE, Vol. 103, NO. GT2, pp. 109-125
  15. Martin, G. R., Finn, W. D. L. and Seed, H. B. (1978) Effects of system compliance on liquefaction tests. J. of Geotech. Engrg. Div., ASCE. Vol. 104, No. GT4, pp. 463-479
  16. Miura, S. and Kawamura, S. (1996) A procedure minimizing membrane penetration effects in undrained triaxial test. Soils and Foundations, JGS, Vol. 36, No.4, pp. 119-126 https://doi.org/10.3208/sandf.36.4_119
  17. Newland, P. L. and Alley, B. H. (1959) Volume change during und-rained triaxial tests on saturated dilatant granular materials. Geotechnique, Vol. 9, No.4, pp. 174-182 https://doi.org/10.1680/geot.1959.9.4.174
  18. Roscoe, K. H., Schofield, A. N., and Thurairajah, A. (1963) An evaluation of test data for selecting a yield criterion for soils. Proc. of the sym. on lab. shear test of soil, ASTM, STP, No. 361, pp.111-128
  19. Tanaka, Y., Kokusho, T., Yoshida, Y., and Kudo, K. (1991) A method for evaluating membrane compliance and system compliance in undrained cyclic shear tests. Soils and Foundations, JSSMFE, Vol. 31, No.3, pp. 30-42 https://doi.org/10.3208/sandf1972.31.3_30
  20. Tokimatsu, K. and Nakamura, K. (1986) A liquefaction test without membrane penetration effects. Soils and Foundations, JSSMFE, Vol. 26, No.4. pp. 127-138 https://doi.org/10.3208/sandf1972.26.4_127
  21. Vaid, Y. P. and Negussey, D. (1984) A critical assessment of membrane penetration in the triaxial test. Geotechnical Testing Journal, ASTM, Vol. 7, No.2, pp. 70-76 https://doi.org/10.1520/GTJ10595J