• Title/Summary/Keyword: 압밀모델

Search Result 124, Processing Time 0.025 seconds

Analysis of Consolidation considering Uncertainties of Geotechnical Parameters and Reliability method (지반특성의 불확실성과 신뢰성 기법을 고려한 압밀해석)

  • Lee, Kyu-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.138-146
    • /
    • 2007
  • Geotechnical performance at the soft ground is strongly dependent on the properties of the soil beneath and adjacent to the structure of interest. These soil properties can be described using deterministic and/or probabilistic models. Deterministic models typically use a single discrete descriptor for the parameter of interest. Probabilistic models describe parameters by using discrete statistical descriptors or probability distribution density functions. The consolidation process depends on several uncertain parameters including the coefficients of consolidation and coefficients of permeability in vertical and horizontal directions. The implication of this uncertain parameter in the design of prefabricated vertical drains for soil improvement is discussed. A sensitivity analysis of the degree of consolidation and calculation of settlements to these uncertain parameters is presented for clayey deposits.

Consideration on Influence Factor in Predicting Undrained Shear Strength and Pore Pressure Coefficient Using Critical State Theory (한계상태이론을 이용한 비배수 전단강도 및 간극수압계수 예측시 영향인자에 관한 검토)

  • 김영수;김기영;문홍득
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.57-70
    • /
    • 2001
  • 한계상태이론은 정규압밀 및 과압밀시료에 대한 비배수 전단강도와 간극수압계수에 관한 식을 제안하고 있는데, 이 식은 3가지 상수를 포함하고 있다. 한계상태상수(M), 한계상태 간격비(${\gamma}$), 한계상태 간극수압계수(Λ)가 바로 그것이며, 이러한 상수는 각 모델 및 구하는 방법에 따라 그 차이가 발생함으로서, 전단강도 및 간극수압계수의 예측시 적지 않은 영향을 미치게 된다. 본 논문에서는 재 성형된 이암풍화토를 이용하여 등방삼축압축시험을 정규압밀과 과압밀로 나누어 실시하고 그 결과를 분석하였으며 이를 토대로 각 모델 및 방법에 따른 상수를 도출하였다. 그리고 이러한 상수의 차이가 비배수 전단강도 및 간극수압계수의 예측에 미치는 영향을 살펴보았다. 시험결과 정규압밀시료의 경우 각 상수의 변화에 따른 비배수 전단강도 및 간극수압계수는 상당한 차이를 보였으며, 한계상태간격비와 Λ값을 강도비로부터 얻어진 값을 사용한 경우가 결과치에 가장 잘 근접함을 알 수 있었다. 과압밀시료의 경우 역시 이들 상수에 따라 전단강도의 변화폭이 크게 나타났으며 정규압밀과 마찬가지로 강도비에서부터 도출된 상수를 적요한 경우 실측치에 가장 근접하였다. 반면 간극수압계수의 예측시에는 상수에 따른 변화폭이 크지 않았으며, 특히 과압밀비가 증가할수록 각 상수에 대한 영향이 작게 나타났다.

  • PDF

Optimization Technique for Parameter Estimation used in 2-Dimensional Modelling of Nonlinear Consolidation Analysis of Soft Deposits (2차원 모델화된 연약지반의 비선형 압밀해석시 이용되는 모델변수 추정을 위한 최적화기법)

  • 김윤태;이승래
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.47-58
    • /
    • 1997
  • The predicted consolidation behavior of in-situ soft clay is quite different from the meas ureal one mainly due to the approximate numerical modelling techniques as well as the uncertainties involved in soil properties and geological configurations. In order to improve the prediction, this paper takes the following pinto consideration : an optimization technique should be adopted for characterizing the in-situ properties from measurements and also an equivalent and efficient model be considered to incorporate the actual 3-D effects. The soil parameters used be the modified Camflay model, which have an effect on the process of consolidation, were back-analyzed by BFGS scheme on the basis of settlements and pore pressures measured in real sites. The optimization technique was implemented in a general consolidation analysis program SPINED. By using the program, one may be able to appropriately analyze the timetependent consolidation behavior of soft deposits.

  • PDF

The Consolidation Behavior on Soft Clay by Numerical Analysis (수치해석에 의한 연약지반의 압밀거동)

  • Kang, Yea Mook;Lee, Dal Won;Lim, Seong Hun;Yoon, Je Shik
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.235-246
    • /
    • 1998
  • This study was performed to find the effect of parameters of numerical analysis model. To find the parameters of numerical analysis model, triaxial test and consolidation test were conducted and the results were compared and analyzed with various methods. Preloaded ground was analyzed with Hyperbolic and Modified Cam-Clay models. Hyperbolic model analysis result was good agreement with measured lateral displacement, and Modified Cam-Clay model agreed more than Hyperbolic model with settlement. When the parameters of models were changed, change of settlement on center of embankment and of maximum lateral displacement on distance 5m from end of embankment were compared. On Hyperbolic model the parameter K has large influence on settlement and lateral displacement. On Modified Cam-Clay model the parameters ${\Gamma}$ and M have large influence on settlement and lateral displacement, respectively.

  • PDF

Nonlinear Analysis of Reinforced Concrete Members using Plasticity with Multiple Failure Criteria (다중 파괴기준의 소성모델을 이용한 철근콘크리트부재의 비선형 해석)

  • 박홍근
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.145-154
    • /
    • 1995
  • Concrete has two different failure mechanisms : compressive crushing and tensile cracking. Concrete models should use the two different failure criteria to analyze the inelastic behavior of concrete including multiaxial crushing and tensile cracking. Concrete models used in this study are based on plasticity with multiple failure criteria of compressive crushing and tensile cracking. For tensile cracking behavior, two different plasticity models are investigated. The* ,e are rotating-crack and fixed-crack plasticity models, classified according to idealization of crack 0rientat:ions. The material models simplify inelastic behavior of concrete for plane stress problenls. The material models are used for the finite element anlaysis. Analytical results are compared with several experiments of reinforced concrete member. The advantages and disadva.ntages of rotating-crack and fixed -crack plasticity models are discussed.

Prediction of Undrained Shear Strength of Normally Consolidated Clay with Varying Consolidation Pressure Ratios Using Artificial Neural Networks (인공신경회로망을 이용한 압밀응력비에 따른 정규압밀점토의 비배수전단강도 예측)

  • 이윤규;윤여원;강병희
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.75-81
    • /
    • 2000
  • The anisotropy of soils has an important effect on stress-strain behavior. In this study, an attempt has been made to implement artificial neural network model for modeling the stress-strain relationship and predicting the undrained shear strength of normally consolidated clay with varying consolidation pressure ratios. The multi-layer neural network model, adopted in this study, utilizes the error back-propagation loaming algorithm. The artificial neural networks use the results of undrained triaxial test with various consolidation pressure ratios and different effective vertical consolidation pressure fur learning and testing data. After learning from a set of actual laboratory testing data, the neural network model predictions of the undrained shear strength of the normally consolidated clay are found to agree well with actual measurements. The predicted values by the artificial neural network model have a determination coefficient$(r^2)$ above 0.973 compared with the measured data. Therefore, this results show a positive potential for the applications of well-trained neural network model in predicting the undrained shear strength of cohesive soils.

  • PDF

Prediction of Residual Settlement of Ground Improved by Vertical Drains Using the Elasto-Viscous Consolidation Model - Application for Field Condition - (탄-점성 압밀이론에 의한 버티칼 드레인 타설지반의 잔류침하 예측 (II) - 현장조건에의 적용 -)

  • Baek, Won-Jin;Lee, Kang-Il;Kim, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.85-95
    • /
    • 2007
  • In this study, in order to propose the prediction method of the residual settlement of clayey ground improved by vertical drains, a series of numerical analyses for a model ground were carried out using the elasto-viscous consolidation model. And the effects of ground improvement conditions of the ratio of effective radii $(r_e/r_w)$, consolidation pressure $({\Delta}p)$ on normally consolidated state, and the OCR (overconsolidation ratio) on overconsolidated state to reduce the residual settlement in three-dimensional consolidation by vertical drains were investigated by performing a series of numerical analyses. Furthermore, based on the results of a series of numerical analyses for the model ground, the predicting method of the residual settlement of clayey ground with vertical drains and the determination method of the value of OCR required to control the residual settlement within an acceptable value are proposed.

Soil Stress-Deformation Analysis by Elasto-Plastic Model and Elasto-Viscoplastic Model - Using Back Analysis Method - (탄소성모델과 탄점소성모델을 이용한 지반변형해석 - 역해석 기법의 적용 -)

  • Kwon, Ho Jin;Song, Young Woo;Lee, Won Taek;Byun, Kwang Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.199-208
    • /
    • 1993
  • Using several soil parameters which are obtained from the PI-experimental formulas and the back analysis method, the elastic analysis, the elasto-plastic analysis and the elasto-viscoplastic analysis for soil deformation are executed. Comparing the results with those of consolidation test, the indirect estimation method for soil parameters and the suitability of constitutive models are studied. The elastic analysis using back analysis result and the elasto-plastic analysis using the perconsolidation test. The elasto-viscoplastic analysis disagrees with the results of meability coefficient obtained from back analysis are the nearest to the results of the consolidation test. It is inferred that elasto-viscoplastic model is not adequate to the soil of which plasticity index is low.

  • PDF

Verification of Single Hardening Model (단일 경화 모델의 검증)

  • Kim, Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.821-825
    • /
    • 2007
  • In this study, the single hardening model with stress history-dependent plastic potential, which has been most recently proposed based on the critical state soil mechanics and needs few model parameters, was verified for the normally, lightly, and heavily over-consolidated clayey specimens. The triaxial compression tests were strictly conducted. The predictions using the single hardening model generally agree with the measurement. The discrepancy exists on its main focusing on the principal stress rotation; however, the plastic work H and the principal stress rotation angle ${\beta}$ are found to be effective indicators of loading history for the plastic potential function of the stress path dependent materials.

  • PDF

Undrained Behavior of Clay-Sand Mixtures under Triaxial Loading

  • Shin, Joon-Ho;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.71-81
    • /
    • 1999
  • A study on the undrained behavior of isotropically consolidated clay-sand mixtures was carried out using the automated triaxial testing apparatus. Overconsolidated ratio, effective mean pressure and clay content( up to 20% bentonite) were the factors varied in the experimental investigation. Undrained behavior(strength and pore water pressure generation during shear in triaxial loading) depends upon overconsolidation ratio, confining pressure and clay content. Significant changes in undrained compression characteristics occurred at around 20% of clay contents in the sand. The test results were analyzed and their behaviors were interpreted within the framework of plasticity constitutive model for clay-sand mixtures. Possible physical bases for the proposed forms are discussed. Validation of the applied model using the laboratory results is also given.

  • PDF