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Nonlinear Analysis of Reinforced Concrete Members
using Plasticity with Multiple Failure Criteria
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Abstract

Concrete has two different failure mechanisms : compressive crushing and tensile cracking.
Concrete models should use the two different failure criteria to analyze the inelastic behavior of
concrete including multiaxial crushing and tensile cracking. Concrete models used in this study
are based on plasticity with multiple failure criteria of compressive crushing and tensile crack-
ing. For tensile cracking behavior, two different plasticity models are investigated, These are
rotating-crack and fixed-crack plasticity models, classified according to idealization of crack
orientations. The material models simplify inelastic behavior of concrete for plane stress
problems. The material models are used for the finite element anlaysis. Analytical results are
compared with several experiments of reinforced concrete member. The advantages and
disadvantages of rotating-crack and fixed-crack plasticity models are discussed.

Keywords : reinforced concrete, multiple failure criteria, rotating-crack and fixed-crack
platicity, plane stress, and finite element analysis
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1. Introduction

Concrete failure is characterized by com-
pressive crushing and tensile cracking.
Crushing  failure induces a relatively
wide-spread damage which has no specific
directionality, On the other hand, cracking has
the characteristics of directionality and
localization. Crushing and cracking can also
occur simultaneously in tension-compression.
Accordingly, the different types of concrete
failure should be addressed in the analysis of
plain and reinforced concrete structures. In
concrete plasticity, two different failure cri-
teria for crushing and cracking are required.

Due to the complexity of tensile cracking, it
is difficult to idealize the directionality of ten-
sile crackes though the material models of
plain and reinforced concrete use idealized
crack orientations. Concrete models that are
frequently used in compurter analysis of plain
or reinforced concrete structures are ortho-
tropic axes models using equivalent uniaxial
stress-strain curves(see Park'”). Though the
ortinotropic axes models are fairly easy to use
in analysis because of the simplicity, they
have difficulty in producing reliable results in
multiaxial compression. The orthotropic axes
models are classified into fixed-crack and
rotating-crack models according to the
idealization of crack orientations. The
idealization of crack orientations is also appli-
cable to the tensile failure criterion of plas-
ticity models,

Plasticity theory usually used for multiaxial
compression are applicable for tensile crack-
ing. If cracking failure surfaces are defined
with principal stresses, this plasticity model
can not define specific crack orientations(see
Feenstra and Borst'"). Instead, this plasticity
model, referred to as rotating-crack plasticity,
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can simulate the rotation of principal stress
axes due to the progressive cracking process,
The rotating-crack plasticity is analogous to
the rotating-crack model of the orthotropic
axes approach.

The program ABAQUS'" uses a different
cracking failure criterion., Tensile crack
orientations are fixed as soon as the initial
cracks develop. The tensile behavior after
cracking is defined in the fixed -crack
orientations. This cracking plasticity is re-
ferred to as fixed-crack plasticity.

It would be worthwhile to compare
fixed-crack and roating-crack  plasticity
models. However, such comparison has not
been reported. For the orthotropic axes model,
several examples of the comparison between
fixed-crack and rotating-crack models have
been published. In the orthotropic axes model,
however, the idealization of the orthotropic
axes controls compressive as well as tensile
behavior. Accordingly, it is difficult to com-
pare the effectiveness of the two crack models
for tensile cracking, For example,
rotating-crack models show better agreement
with heavily reinforced members whose failure
occurs due to crushing after extensive crack-
ing, Fixed-crack models overestimate the ulti-
mate strengths. This 1s because the equivalent
uniaxial stress-strain relation in the idealized
fixed crack orientation overestimates the com-
pressive strength of concrete.

In the plasticity models with multiple failure
criteria, the tensile failure criterion is indepen-
dent of compressive crushing, and it is poss-
ible to compare the effectiveness of the
rotating and the fixed crack plasticity for ten-
sile behavior. Such comparison is the emphasis
of this paper.



2. Material Model

The plasticity material model uses isotropic
hardening and multiple failure criteria for com-
pressive crushing and tensile cracking. In com-
pression-dominant circumstances, the crushing
failure surface activates earlier causing the in-
elastic behavior due to crushing to dominate
over that due to cracking. The opposite is true
in tension-dominant circumstances,

The material model simplifies the actual
concrete behavior for plane stress problems
though it can be wused for wvairous load
conditions. As a crushing failure criterion, von
Mises criterion is used, The failure criterion
with associative flow tends to oversimplify the
actual concrete behavior. But, it is simple for
application and relatively accurate for plane
stress problem which is less affected by ex-
cessive hydrostatic pressure and inelastic volu-

45 The material model uses

metric strain'
rotating-crack and fixed-crack plasticity for
cracking behavior.

In fixed-crack plasticity, when the tensile
stress in a principal incremental strain axis
approaches the cracking stress, the cracking
failure criterion activates in that axis. Also,
the shear stiffness related to the axis decrease
after the tensile cracking. Accordingly, the
orthotropic characteristics of cracked concrete
are established in the principal incremental
strain axes after cracking. Under further
loading, the orthotropic axes is fixed to the in-
itial crack orientation. The material behavior
of the cracked concrete is defined in the
orthotropic axes. Also, another failure surface
for cracking is examined normal to the initial
crack direction. As a result, as manyv as three
failure surfaces for crushing and cracking in
two orthogonal axes may activate simul-
taneously in plane stress.
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In rotating-crack plasticity, the orthotropic
axes continuously rotate to the principal stress
axes even after cracking occurs. The maxi-
mum tensile stress in the principal tensile axis
depends on the cracking failure surface func:
tion. Since the principal tensile stress axis
represents the crack orientation, only one
crack direction exists without additional crack
directions. However, multiple crack directions
are not likely to exist under monotonic loading.
In plane stress condition, as many as two fail-
ure surfaces may activate simultaneously in
the rotating-crack plasticity,

3. Failure Criteria for Crushing and Crack-
ing

The von Mises criterion is

fi=0e1— 61(en) =4/ %§'§ —ay(egy) (1)
where 6. is the effective stress and o, is the
faillure surface function of equivalent plastic
strain, ;. The subscript “1” indicates com-

pressive crushing. The equivalent plastic
strain, &y, has the following relation with the

failure criterion,

For the vector of plastic strain rate, an as-
sociative flow is used.

tl = A (*“’) = A g (2)
where ;11 is the plastic strain rate multiplier.
The equivalent plastic strain rate is defined by

the scalar product of the vector of plastic
strain rate,

'Spl = \/‘%“(épl ¢ _lm) = C)jq (3)

The equivalent plastic strain in Eq. 1 is
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accumulated from the equivalent plastic strain
rate,

& = [ & (4)

In Fig. 1, the failure surface ¢, is defined by
the function of the equivalent plastic strain g.

The failure criterion of tensile cracking is

fg == Ge2 &Q(Spg) (5)
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Fig. 1 Failure surface function used for crushing
failure criterion

For the fixed-crack plasticity, the effective
stress, oe, 1S the tensile stress component
either 1n current principal incremental strain
axes before cracking or in the fixed ortho-
tropic  axis after cracking. For the
rotating-crack plasticity, the effective stress is
current principal tensile stress.

The equivalent plastic strain rate is
b = X (6—0):;&2 a (6)
where the subscript “2” indicates the cracking

failure criterion,

In Fig. 2, the cracking failure surface, &, is
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Fig. 2 Failure surface function used for cracking
failure criterion

defined by the function of the equivalent plas-
tic strain, gp. For the post-cracking behavior,
the tensile failure surface considers tension
softening due to cracking and tension stiffen-
ing due to the interaction between cracked

concrete and reinforcement. In this figure,
fomo = 40pefmg < 0.4fme (7)

where p.=Xpicos’l, and ¢ is the angle between
the orientation of the initial crack and a
reinforcing steel layer.

Efpr = LZl(esy,plcoszo,) (8)
Pe

where &y i1s the yield strain of corresponding

reinforcing steel layer.
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Eﬁ. (9)

Espz —

where G; i1s the fracture energy of tensile
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Fig. 3 Reduced shear stiffness due to cracking in
fixed-crack plasticity



cracking, and h is the effective length corre-
sponding to a Gauss point,

As shown in Fig. 3, the shear stiffness 1s
significantly reduced due to tensile cracking in
the fixed-crack plasticity.

4. Integration of Flow Rules

As a scheme to return the stresses to corre-
sponding failure surface following an initially
predicted stresses, a simple backward-Euler
scheme is used(see Crisfield™). [n inelastic
behavior, the failure criteria are not satisfied
with the initial elastic predictor. Then, a
first-order Taylor expansion of the failure cri-
teria gives

of) of

==fl ( ) Acr“—i—( )Atg‘ = (Jor

fIZﬂ’-Fa_llAq ~H|C1AA“‘,):() i=1,23 (10

ey

where the superscript indicates current
iteration, As mentioned before, as many as
three failure surfaces can activate simul-
taneously., The stress Increments in current

iteration are

Ag"=D(Ae) =D(A¢' - Ary)
=D(Ae"—ZAeh) =D(As'— ZajAL) (1)
In the finite element analysis, it is needed to

obtain total stress increments corresponding to

given to-al strain increments. Accordingly, set

U“‘-‘0 after the initial elastic predictor.

From Equations 10 and 11, the plastic strain
rate mul-iplier can be obtained :

A-A)=F' (12)

where A= A AZYAZS Y
F=(f )", and
Ay=a/DatH, C 5,

The updated stresses and equivalent plastic
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strains are

o'=g"~Z(D - Agy)=¢"-E(D - al A2, and
eh o= e + C, AL (13)

In Eqg. 13, the initially predicted stresses are
relaxed by the backward-Euler procedure, If
the updated failure criteria with new stress
components, Eq. 10, are not sufficient]y small,
this relaxation procedure is applied again.

The backward-Euler procedure used for the
integration should be modified for multiple
plasticity. Sometimes, the backward-Euler
procedure does not accomplish convergence to
failure surfaces with a reasonable number of
iterations, This is becasue Eq. 12 vields
unexpectedly large or negative plastic strain
rate multipliers. This indicates that the given
strain increments are too large for the inte-
gration. The given strain increments can then
be divided into small steps, and iterations are
needed each step up to the given strain
increments,

5. Consistent Tangent Stiffness Matrix

For fast and stable convergence in nonlinear
calculation of plasticity, the tangent stiffness
matrix needs to be consistent with the back-
ward-Euler procedure, Differentiation of Eq. 11

gives

) .
----- ~Z(4D - a) ~Z(AiD - (5=)g) or
e P

a=(1+Z(ALD - (-‘—im 'D(;-2(ha)

=R(z—Zia)) (15)

To remain on the failure surface, the expan-
sion in Eq. 10 should disappear,
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. of, . of .
ﬁ:(é—)T a+(—i———) &n = O or
ca - Oy
f=a ¢—H. C/ i =0 i=123 (16)

Using Equations 15 and 16,

B-i=a -Re an

al

where By=a' Ra, + H,C ¢, anda’=| a/ |
T

as .

From Equations 17 and 15, the consistent
tangent matrix can be derived :

D=(R-RaB™"a"R" (18)

Implementation in Finite Element Method

The developed material models are used for
finite element analysis. Reinforced concrete
members are idealized by 4-node isoparametric
elements, The bilinear kinematic hardening is
used for the material model of reinforcing
steel. The reinforcing steel can be used as
either isoparametric elements with smeared
properties or discrete line elements. As
nonlinear computational scheme, a simplified
displacement control method is used(see

Ramm™). As mentioned in Ref. 6, the dis-

placement control method produces better con-
vergence rates than the arc-length method.

6. Application of Material Model
The concrete plasticity models are verified

for a reinforced concrete beam and reinforced

concrete masonry shear walls.
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6.1 Reinforced Concrete Beam Tests(Bresler
and Scordelis)

Bresler and Scordelis? investigated the
shear capacity of a series of beam specimens,
The properties and the analytical model of
their Beam A-1 are shown in Fig. 4. The ratio
of shear span to beam depth is 3.26. This beam
has heavy longitudinal reinforcement at the
bottom, so that inelastic flexural deformation
due to yielding of reinforcing steel is
prevented. On the other hand, the low re-
inforcement ratio of the vertical bars invites
extensive diagonal tension cracking. The beam
fails due to compressive crushing in the top
middle of the beam. The heavy reinforcement
in tension and diagonal tension cracking induce
the shear-compression failure.

As shown in Fig. 5, the analytical result of
the rotating-crack plasticity agrees well with

{ P

1830

t

305 Beam A-1

Top bars : 2— #4(A=1,29cm?)
Bottom bars : 4— #9(A,=6.46cm?)
Stirrups : #2(A;=0.32cm?) @200
All dimensions in mm

P/2¢

560

7

416 four-node rectangular elements and 64 two-node line
elements Analytical half-beam model

Fig. 4 Reinforced concrete beam tested by Bresler
and Scordelis
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Fig. 5 Comparison between analyses and experiment of
reinforced concrete beam(Bresler and Scordelis)

the experiment up to the maximum load ca-
pacity of the beam. On the other hand, the
fixed-crack plasticity overestimates the maxi-
mum load capacity, The analysis with the
reduced shear stiffness, G,=0.1G(not shown in
the figure) produces almost the same results
as that with G,=0.2G. This indicates that the
idealized fixed crack directions significantly
affect the analytical result rather than the
reduced shear stiffness. The analyses also
show sudden decrease of load capacity which
indicates the brittle failure without much in-
elastic deformation,

The analyses have difficulty in numerical
calculation at the sudden decrease of load ca-
pacity. As mentioned in Ref. 6, the crushing
failure induces the change of the load-transfer
mechanism and a sudden decrease of the load
capacity. For the plasticity models which are
incremental formulations, small variations of
stress-strain relations are required during
nonhnear analysis. However, the sudden de-
crease of the load capacity induces consider-
able variations of stress-strain relations across

the member.
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6.2 Reinforced Concrete Masonry Wall Tests
(Shing et al.)

The plasticity models are applied for the
reinforced concrete masonry shear walls tested
by Shing et al.(see de la Rovere') Walls 7, 10
and 12 are analyzed here. As shown in Fig. 6,
the shear walls have a rigid base and a top
slab. They are subjected to uniformly
distributed vertical loads and a concentrated
cyclic horizontal load at the top slab. The
shear walls are reinforced by uniformly

Table 1 Loading conditions and material properties of
shear walls tested by Shing et al.

Horizontal Vertical |

Mas 1
wall | steel Steel “;Xf?
No. K G/‘" L ops fo Py oy | Sd

me : y 0
g/c % |kg/cml % |kg /cmé n
7 2051 | 014 3990 | 0.74 | 1925 | 182
10 | 2255 | 004 3990 | 038 4433 | 182
L2 | 2255 §0.24 | 4644 0 038 0 433 | 182
) 1830
! !
— [ ]
T T T 7" T
I S B N ‘ ,
: ] : I : 1 TT h II wall thickness
R R St e g|
N U N T = . .
l]I]I]lIlll All dimensions
N S N A ‘ in mm
T T 1 T 71
T T T T 11 —_

144 four-node elements
for wall

12 two-node line
elements for top slab

G
Analytical Model

Fig. 6 Reinforced concrete masonry wall tested
by Shing et al.
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distributed vertical and horizontal steel layers. 60
The loading conditions and the properties of - TEEZ;.{‘"Z‘;ZE:T’;E sy
materials are shown in Table 1. The analytical = (6,20206)
model is shown in Fig. 6. % 107 TN

Figures 7-9 show the envelopes of the cyclic E 304
load-deflection curves of Walls 7, 10 and 12. ?Ez(y
Walls 10 and 12, with similar horizontal and 5
vertical reinforcement ratios, have a maximum )
horizontal load capacity of 30 tons, which 0,0,... r T g . !
gradually decreases with increasing displace- Lateral displacement (cm)
ment. Wall 12, with more horizontal reinforce- Fig. 7 Comparison between analyses and experiment
ment, shows more ductile behavior than Wall for Wall 7
10. Wall 7, with heavy vertical reinforcement,
has a large shear capacity. However, due to 60
the relatively light horizontal reinforcement, 50- ;;ZT:Lir?;F::ack plasticity
compression crushing occurs suddenly just 40- 7.7tg,'idg-';cé)pmmy

after the maximum horizontal load.
In Figures 7-9, the analytical load-deflection
curves under monotonic loading are compared

Lateral force(ton)

with the envelopes of the experimental cyclic

load-deflection curves, The rotating-crack

oL - l " :

plasticity produces better agreement with the 0 1 2 3 4
. . Lateral displacement (cm)
maximum load of the experiments. The

fixed-crack plasticity with G,=0.2G overesti- Fig. 8 Comparison between analyses and experiment

. . for wall 10
mates the maximum loads. Neither crack plas-

ticity follows the ductile behavior of Walls 10

and 12 and the sudden decrease of the load ca- o eonimon

pacity of Wall 7. - 50 - Z:\::rc.?a:r;:; :'E:::cuy
Analytically, the rotating-crack plasticity is % G029

more stable in convergence than the fsj

fixed-crack plasticity. In the fixed-crack plas- g

ticity, the sudden decrease of the shear stiff- E

ness due to tensile cracking causes difficulty

in numerical calculation, 0

T — = T
0 1 2 3 4
Lateral displacement{cm)

7. Conclusion
Fig. 9 Comparison between analyses and experiment

. . . for Walil 12
Crushing and cracking can occur simul-

taneously in reinforced concrete. Crushing fail-
ure of cracked concrete is common in

reinforced concrete members. Accordingly, the

152 232|585 =2%



multiple failure criteria for crushing and crack-
ing should be addressed simultaneously in the
analysis of reinforced concrete members, This
plasticity model using multiple failure criteria
provides reasonable failure mode cf reinforced
concrete members in plane stress. According
to idealization of crack  orientations,
rotating-crack and fixed-crack plasticity can
be used for tensile behavior.

Analyses using the plasticity models show
reasonable load-deflection curves which are
consistent with the experiments of reinforced
concrete member, The rotating-crack plas-
ticity produce better agreement with the
experiments than the fixed-crack plasticity.
The fixed-crack plasticity overestimates the
ultimate loads. This indicates that the tensile
stress-strain relation in the idealized fixed
crack direction does not accurately follows the
rotation of principal axes due to the progress-
ive cracking process of reinforced concrete,

In shear walls with fixed supports, the von
Mises model does not produce good agreement
with  the
Drucker-Prager model, which i1s more sensitive

post-crushing  behavior, The
to confinement, should be used to consider
confinernent provided by the fixed supports.
The backward-Euler procedure used for inte-
gration of flow rule should be modified for
multiple plasticity. Sometimes, the
backward-Euler procedure does not accomplish
convergence to failure surfaces with a reason-
able number of iterations. This indicates that
the given strain increments are tco large for
the integration. The given strain increments
can then be divided into small steps, and each
step is iterated. The steps are combined to
give the stresses corresponding to the given

strain increments.
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Notations
D=Elastic stiffness matrix
Dy==Consistent tangent stiffness matrix
==Failure criterion
G==Shear stiffness
Gr==Reduced shear stiffness
G,=Fracture energy of tensile cracking
h=Effective length corresponding to Gauss

point

s==Deviatoric stress
d,=Kronecker delta

).ﬁf-’Plastic strain rate multiplier

o,=Function of failure surface
Ag=Incremental stress vector
gi==Equivalent plastic strain
&y, = Yield strain of reinforcing steel
Ag=Incremental strain vector
Ag.~=Incremental elastic strain vector
Ag,=Incremental plastic strain vector

p.~Effective reinforcement ratio

tion
px=Reinforcement ratio in x direction

pv=Reinforcement ratio in y direction
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