• Title/Summary/Keyword: 암석표준물질

Search Result 20, Processing Time 0.015 seconds

A Preliminary Study for a Glass Geological Reference Material Using Obsidian (흑요암을 이용한 유리 지질 표준물질에 대한 예비 연구)

  • Jin, Mi-Eun;Jwa, Yong-Joo;Park, Sang Gu;Sun, Gwang Min
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.65-71
    • /
    • 2020
  • Glass reference materials have been essentially used for precise geochemistry analytical techniques. In order to make up for the drawback of synthetic glass reference materials, which have the high uncertainty caused by the difference in composition of natural rocks, we introduce a glass geostandard using natural glass. The NK-B1G sample, which comes from the Baekdusan obsidian, is a natural glassy rock that contains only few crystals such as microlites or inclusions. We examined the feasibility of the sample as a reference material for microanalysis like EPMA or LA-ICPMS.

A Preliminary Study of Korean Geostansdards Using Mesozoic Granites (중생대 화강암을 이용한 한국산 지질 표준물질 제작을 위한 예비연구)

  • Jin, Mi-Eun;Sun, Gwang Min;Park, Sang Gu;Jwa, Yong-Joo
    • Journal of the Korean earth science society
    • /
    • v.38 no.6
    • /
    • pp.421-426
    • /
    • 2017
  • In this study, we selected three representative granite samples and conducted petrological observation to establish the Korean geostandards. Samples were taken from the two Jurassic (KJG-1, KJG-2) and one Cretaceous (KCG-1) granites in South Korea. The powder samples were prepared by the standard pulverization process, and glass beads were made for geochemical analysis using X-ray fluorescence (XRF) method, and finally, major element contents of the samples were acquired. The analytical data are shown with mean, standard deviation and relative standard deviation. The accuracy of the analysis was confirmed within an estimated error range of about 5% by comparing the recommended true values of the USGS and GSJ geostandards. Also, we checked the analytical precision by calculating a relative standard deviation of about 3% from the XRF analytical results for the three samples.

Olivine Synthesis Using Stainless Steel Tube (스테인리스강관을 이용한 감람석 합성)

  • Gi Young Jeong
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.337-343
    • /
    • 2023
  • Olivine is a complete solid solution of fayalite and forsterite that is abundant in Earth and extraterrestrial materials such as rocky planets, meteorites, asteroids, and interplanetary dust. Due to the wide range of olivine compositions, diverse olivine standards are required for quantitative mineralogical analysis of olivine-bearing materials. Olivine standards were synthesized using an electric furnace and stainless steel tubes at temperatures ranging from 1000~1100 ℃. Overall, olivine was synthesized covering the full range of composition, with some synthetic impurities and unreacted material. The synthesized olivine showed a linear increase in the unit cell dimension in proportion to the molar ratio of fayalite in the starting materials, and the diffraction intensity was consistent with that of natural olivine. However, iron-rich synthetic olivine samples tend to have a higher content of impurity, suggesting that not all synthetic olivine can be used as a standard material yet, and improvements in the synthesis process, such as using high purity starting materials and control of reaction time and temperature, are required.

The Statistical on Numerical Analysis for The Petrology and Bulk Chemical Composition. In Cheju Volcanic Island (제주화산도의 암석성분에 관한 통계학적인 수치해석)

  • 택훈
    • Journal of the Speleological Society of Korea
    • /
    • v.14 no.15
    • /
    • pp.42-90
    • /
    • 1987
  • Lee, Moon Won reported by 63 kinds lescribing the petrography and bulk chemical Composition in Petrology of Cheju volcanic island. The total Chemical Composition data was analyzed by the program of FORTRAN77. First, the Conversition equations and the scatter diagram were examined to the analysis, by the least square method. Next, a statistical data requested a mean Value, maximum value, minimum value, the range, the standard deviation, the variance, the Standord Error and the Coefficient of variation. In the standard deviation, a small Composition is MnO and P$_2$O$\sub$5/, a large Composition is SiO$_2$, Mgo and FeO. The Standard error and the variance were the tandency looked like the Standard deviation well. However, the Coefficient Variation differs from the Standard deviation. Where, a large Coefficient of variation are H$_2$O$\^$-/ and H$_2$O$\^$+/, a small Coefficient of variation are Al$_2$O$_3$ and SiO$_2$. The Correlation of Coefficient Can be Calculated numerically from the relation between SiO$_2$, Al$_2$O$_3$ and TiO$_2$ to other Compositions.

  • PDF

Lead isotope measurement of geological reference materials using thermal ionization mass spectrometry (열이온화질량분석기를 이용한 암석표준시료에 대한 납 동위원소 분석)

  • Lee, Hyo Min;Jo, Hui Je;Kim, Taehoon
    • Analytical Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.245-251
    • /
    • 2020
  • Lead (Pb) has been shown to be a useful tracer of contamination sources and geochemical processes such as age dating and crustal evolution. These studies require a chromatographic technique for Pb separation from geological samples. This paper presents a comparison study on the effect of eluent concentration between 6M HCl and 8M HCl on the separation of Pb from Pb resin. The results showed that the separation of Pb using 6M HCl as the eluent was not effective compared to the separation using 8M HCl. To verify this method, we measured the Pb isotopic compositions of the Pb isotopic standard (NIST NBS981) and geological reference materials (BCR-2, GSP-2, and JG-1a) using a thermal ionization mass spectrometer (TIMS). The results correspond well with the reported values within the error range, implying that this method can be useful.

Optimal Conditions for Pretreated Sample for Sr Isotope Analysis by MC-ICP-MS: A Comparison Between Eichrom (SR-R50-S)'s and Bio-Rad(AG®50W-X8)'s Resins (다검출기 유도결합 플라즈마 질량분석기에 의한 Sr 동위원소 분석을 위해 전처리된 시료의 최적 조건: Eichrom사 Sr 수지(SR-R50-S)와 Bio-Rad사 수지(AG®50W-X8) 비교)

  • Myoung Jung, Kim;Seung-Gu, Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.507-520
    • /
    • 2022
  • The Sr isotope ratio, which is used as basic data for rock formation time, crustal and mantle evolution studies, is determined by mass spectrometer such as thermal ionization mass spectrometry (TIMS) or multi-detector inductively coupled plasma mass spectrometry (MC-ICP-MS). In this technical report, we compared how incomplete chemical separation of elements affects the determination of Sr isotope ratios. For the experiment, commercial resin, NBS987(NIST SRM987) Sr isotope standard, and rock standard samples from the Geological Survey of Japan (GSJ) such as JG1a, JB3 and JA1 were used. As a result of the comparative experiment, it was clearly observed that the measured values of 87Sr/86Sr change when Rb remains due to incomplete separation of the NBS987 Sr isotope standard sample as well as the rock standard samples of GSJ. This indicates that complete separation is an important factor since the calculated value deviates from the true value even though correction for isotope interference by isobar is performed when measuring the isotope ratio with MC-ICP-MS. This also suggests that, when reporting the measurement result of Sr isotope ratio using MC-ICP-MS, the measurement strength of 85Rb should be reported together with the measurement strength of all isotopes of Sr so that isotope interference by isobar can be judged.

Evaluation of LA-ICP-MS Whole Rock Trace Element Analysis Using Fused Glass Bead of Silicate Rocks (규산염 암석의 알칼리 용융 유리원판에 대한 LA-ICP-MS 전암 미량원소 분석법 평가)

  • Kim, Myong Jung;Kim, Taehoon;Park, Kye-Hun;Lee, Ye Ji;Yang, Yun Seok;Moon, Jeongjin
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.141-147
    • /
    • 2015
  • Using laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), we evaluated the reliability of trace element abundance data measured from the silicate rock references of JR-3, JG-3, JGb-1 and JB-1b using glass discs made by alkali fusion. For 28 elements including rare earth elements, relative standard deviations (RSD) are better than 7% in case when the concentrations of the elements in the rock samples are greater than 10 ppm. However, RSD shows somewhat increased values for the concentrations less than 10 ppm, but never exceeds 25%. Compared with previously reported averages of the compiled abundance data, our data display satisfactory results for the most cases with differences less than 10%. We suggest that LA-ICP-MS analysis using fused glass beads is a reliable, precise and time-saving method of trace element analysis for the silicate rocks spanning from mafic to felsic compositions.

Copper Isotope Measurements Using a Neptune MC-ICP-MS (다검출기 유도결합 플라즈마 질량분석기를 이용한 구리 동위원소 분석법)

  • Park, Sanghee;Ryu, Jong-Sik;Shin, Hyung Seon;Kil, Youngwoo;Jo, Yunsoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.221-227
    • /
    • 2016
  • Copper is an essential transition metal involving in various biogeochemical processes. With the recent advances in analytical techniques and mass spectrometry, such as MC-ICP-MS, it is possible to measure Cu isotopes, which allows us to understand various biogeochemical processes in detail. Nonetheless, few studies have been performed in South Korea. In this study, we compared two purification methods previously reported using an anion exchange resin ($AG^{(R)}$ MP-1M), developed the best method in our lab environment, and then verified it by measuring Cu isotopic compositions in two USGS geological reference materials (BHVO-2 and BIR-1a). Although all matrix cations causing mass bias were effectively removed through both two methods with the yield of better than 95%, the method using the mixture of HCl and $H_2O_2$ only displays Cu isotopic compositions, in excellent agreement with reported values within the error. The method developed in this study is expected to be commonly applied to earth and environmental sciences.

A Comparison of Laser Flash and the Divided-bar Methods of Measuring Thermal Conductivity of Rocks (암석 열전도도 측정을 위한 Laser Flash Method와 Divided-bar Method 비교)

  • Oh, Jae-Ho;Kim, Hyoung-Chan;Park, Jeong-Min
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.387-397
    • /
    • 2011
  • In this study, we conducted the study of the merits and demerits of the laser flash and the divided-bar methods for measuring the thermal conductivity of rocks and investigated applicability of the divided-bar apparatus which was developed by KIGAM. The laser flash method can measure thermal diffusivity, specific heat capacity, and thermal conductivity of rocks with even small thickness (< ~3 mm) in the high temperature range($25-200^{\circ}C$) in non-contact mode. For the laser flash method, samples must be uniform and homogeneous. In the case of the divided-bar method, the apparatus measures only thermal conductivity of rock samples at the room temperature. We measured thermal conductivities of 12 rock samples with low density and high porosity using two methods. In the laser flash method, there exist potential errors caused by the effect of pulse dispersion and reflection by various minerals and porosity in rock samples; the difference in thermal conductivity values measured on the front surface and the opposite surface ranges from 0.001 to 0.140 W/mK with the standard deviation of 0.003~0.089 W/mK, which seems to be caused by heterogeneity of rock samples. On the contrary, the divided-bar apparatus shows stable thermal conductivity measurements and relatively small measurement errors; the difference in thermal conductivity values, just as we applied to the laser frash method, is 0.001~0.016 W/mK with the standard deviation 0.001~0.034 W/mK. In turn, the divided-bar method can be applied to more thick samples that are more representative of bulk thermal conductivity.