DOI QR코드

DOI QR Code

Copper Isotope Measurements Using a Neptune MC-ICP-MS

다검출기 유도결합 플라즈마 질량분석기를 이용한 구리 동위원소 분석법

  • Park, Sanghee (Division of Earth and Environmental Sciences, Korea Basic Science Institute) ;
  • Ryu, Jong-Sik (Division of Earth and Environmental Sciences, Korea Basic Science Institute) ;
  • Shin, Hyung Seon (Division of Earth and Environmental Sciences, Korea Basic Science Institute) ;
  • Kil, Youngwoo (Department of Energy and Resources Engineering, Chonnam National University) ;
  • Jo, Yunsoo (Department of Energy and Resources Engineering, Chonnam National University)
  • 박상희 (한국기초과학지원연구원 지구환경연구부) ;
  • 류종식 (한국기초과학지원연구원 지구환경연구부) ;
  • 신형선 (한국기초과학지원연구원 지구환경연구부) ;
  • 길영우 (전남대학교 에너지자원공학과) ;
  • 조윤수 (전남대학교 에너지자원공학과)
  • Received : 2016.09.20
  • Accepted : 2016.12.21
  • Published : 2016.12.30

Abstract

Copper is an essential transition metal involving in various biogeochemical processes. With the recent advances in analytical techniques and mass spectrometry, such as MC-ICP-MS, it is possible to measure Cu isotopes, which allows us to understand various biogeochemical processes in detail. Nonetheless, few studies have been performed in South Korea. In this study, we compared two purification methods previously reported using an anion exchange resin ($AG^{(R)}$ MP-1M), developed the best method in our lab environment, and then verified it by measuring Cu isotopic compositions in two USGS geological reference materials (BHVO-2 and BIR-1a). Although all matrix cations causing mass bias were effectively removed through both two methods with the yield of better than 95%, the method using the mixture of HCl and $H_2O_2$ only displays Cu isotopic compositions, in excellent agreement with reported values within the error. The method developed in this study is expected to be commonly applied to earth and environmental sciences.

구리는 생지구화학적인 과정에 필수적인 전이금속으로 최근 질량분석기 및 분석기술의 발달로 인해 구리 동위원소를 이용한 연구가 전 세계적으로 활발하게 진행되고 있으나, 국내에서는 아직까지 구리 동위원소에 대한 분석 및 이를 이용한 연구가 전무한 실정이다. 본 연구에서는 $AG^{(R)}$ MP-1M 음이온 교환 수지를 충진한 칼럼을 이용하여 구리 분리법을 정립하고 이에 대한 신뢰성 검증을 위하여 두 종류의 암석표준물질(BHVO-2, BIR-1a)에 대해서 동위원소 분석을 실시하였다. 본 연구에 사용된 두 가지 분리법 모두 95% 이상의 회수율을 보였으나 HCl과 $H_2O_2$의 혼합산을 이용하여 분리된 구리에 대하여 분석된 동위원소 값이 기존 보고 값과 오차범위 내에서 잘 일치하였다. 본 연구에서 개발된 구리 동위원소 분석법은 향후 환경과학 등 다양한 분야에서 중요하게 활용될 것으로 기대된다.

Keywords

References

  1. Albarede F. (2004) The stable isotope geochemistry of Copper and Zinc. In: Johnson C.M. Beard B.L. and Albarede F.(eds), Geochemistry of non-traditional stable isotopes. Reviews Mineralogy and Geochemistry, 55, 409-427. https://doi.org/10.2138/gsrmg.55.1.409
  2. Balistrieri L.S., Borrok D.M., Wanty R.B., and Ridley W.I. (2008) Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water. Geochimica et Cosmochimica Acta, 72, 311-328. https://doi.org/10.1016/j.gca.2007.11.013
  3. Bermin J., Vance D., Archer C., and Statham P.J. (2006) The determination of the isotopic composition of Cu and Zn in seawater. Chemical Geology, 226, 280-297. https://doi.org/10.1016/j.chemgeo.2005.09.025
  4. Bigalke M., Weyer S., and Wilcke W. (2011) Stable Cu isotope fractionation in soils during oxic weathering and podzolization. Geochimica et Cosmochimica Acta, 75, 3119-3134. https://doi.org/10.1016/j.gca.2011.03.005
  5. Bigalke M., Weyer S., Kobza J., and Wilcke W. (2010) Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil. Geochimica et Cosmochimica Acta, 74, 6801-6813. https://doi.org/10.1016/j.gca.2010.08.044
  6. Borrok D.M., Wanty R.B., Ridley W.I., Wolf R., Lamothe P.J., and Adams M. (2007) Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement. Chemical Geology, 242, 400-414. https://doi.org/10.1016/j.chemgeo.2007.04.004
  7. Chapman J.B., Mason T.F.D, Weiss D.J., Coles B.J., and Wilkinson J.J. (2005) Chemical separation and isotopic variations of Cu and Zn from five geological reference materials. Geostandards and Geoanalytical Research, 30(1), 5-16.
  8. Dekov V.M., Rouxel O., Asael D., Halenius U., and Munnik F (2013) Native Cu from the oceanic crust: Isotopic insights into native metal origin. Chemical Geology, 359, 136-149. https://doi.org/10.1016/j.chemgeo.2013.10.001
  9. Herzog G.F., Moynier F., Albarede F., and Berezhnoy A.A. (2009) Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele's hairs, and a terrestrial basalt. Geochemica et Cosmochimica Acta, 73, 5884-5904. https://doi.org/10.1016/j.gca.2009.05.067
  10. Hou Q.H., Zhou L., Gao S., Zhang T., Feng L., and Yang L. (2016) Use of Ga for mass bias correction for the accurate determination of copper isotope ratio in the NIST SRM 3114 Cu standard and geological samples by MC-ICPMS. Journal of Analytical Atomic Spectrometry, 31, 280-287. https://doi.org/10.1039/C4JA00488D
  11. Kimball B.E., Mathur R., Dohnalkova A.C., Wall A.J., Runkel R.L., and Brantley S.L. (2009) Copper isotope fractionation in acid mine drainage. Geochimica et Cosmochimica Acta, 73, 1247-1263. https://doi.org/10.1016/j.gca.2008.11.035
  12. Larner F., Rehkamper M., Coles B.J., Kreissig K., Weiss D.J., Sampson B., Unsworth C., and Strekopytov S. (2011) A new separation procedure for Cu prior to stable isotope analysis by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 26, 1627-1632. https://doi.org/10.1039/c1ja10067j
  13. Li W., Jackson S.E., Pearson N.J., and Graham S. (2010) Copper isotopic zonation in the Northparkes porphyry Cu-Au deposit, SE Australia. Geochimica et Cosmochimica Acta, 74, 4078-4096. https://doi.org/10.1016/j.gca.2010.04.003
  14. Li W., Jackson S.E., Pearson N.J., Alard O., and Chappell B.W. (2009) The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia. Chemical Geology, 258, 38-49. https://doi.org/10.1016/j.chemgeo.2008.06.047
  15. Liu S.A., Huang J., Liu J., Wӧrner G., Yang W., Tang Y.J., Chen Y., Tang L., Zheng J., and Li S. (2015) Copper isotopic composition of the silicate Earth. Earth and Planetary Science Letters, 427, 95-103. https://doi.org/10.1016/j.epsl.2015.06.061
  16. Liu S.A., Li D., Li S., Teng F.Z., Ke S., He Y., and Lu Y. (2014a) High-precision copper and iron isotope analysis of igneous rock standards by MCICP-MS, Journal of Analytical Atomic Spectrometry, 29, 122-133. https://doi.org/10.1039/C3JA50232E
  17. Liu S.A., Teng F.Z., Li S., Wei G.J., Ma J.L., and Li D. (2014b) Copper and iron isotope fractionation during weathering and pedogenesis: Insights from saprolite profiles, Geochimica et Cosmochimica Acta, 146, 59-75. https://doi.org/10.1016/j.gca.2014.09.040
  18. Lv Y., Liu S.A., Zhu J.M., and Li S. (2016) Copper and zinc isotope fractionation during deposition and weathering of highly metalliferous black shales in central China. Chemical Geology, (In Press) http://dx.doi.org/10.1016/j.chemgeo.2016.01.016.
  19. Marechal C.N., Telouk P., and Albarede F. (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology, 156, 251-273. https://doi.org/10.1016/S0009-2541(98)00191-0
  20. Mathur R., Titley S., Barra F., Brantley S., Wilson M., Phillips A., Munizaga F., Maksaev V., Vervoort J., and Hart G. (2009) Exploration potential of Cu isotope fractionation in prophyry copper deposits. Journal of Geochemical Exploration, 102, 1-6. https://doi.org/10.1016/j.gexplo.2008.09.004
  21. Mason T.F.D., Weiss D.J., Chapman J.B., Wilinson J.J., Tessalina S.G., Spiro B., Horstwood M.S.A., Spratt J., and Coles B.J. (2005) Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chemical Geology, 221, 170-187. https://doi.org/10.1016/j.chemgeo.2005.04.011
  22. Mason T.F.D., Weiss D.J., Horstwood M., Parrish R.R., Russell S.S., Mullane E., and Coles B.J. (2004) High-precision Cu and Zn isotope analysis by plasma source mass spectrometry Part 1. Spectral interferences and their correction. Journal of Analytical Atomic Spectrometry, 19, 209-217. https://doi.org/10.1039/b306958c
  23. Moeller K., Schoenberg R., Pedersen R.B., Weiss D., and Dong S. (2012) Calibration of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for Zinc isotope amount ratio determinations. Geostandards and Geoanalytical Research, 36(2), 177-199. https://doi.org/10.1111/j.1751-908X.2011.00153.x
  24. Moynier F., Koeberl C., Beck P., Jourdan F., and Telouk P. (2010) Isotopic fractionation of Cu in tekrites. Geochimica et Cosmochimica Acta, 74, 799-807. https://doi.org/10.1016/j.gca.2009.10.012
  25. Moynier F., Albared F., and Herzog G.F. (2006) Isotopic composition of zinc, copper, and iron in lunar samples. Geochimica et Cosmochimica Acta, 70, 6103-6117. https://doi.org/10.1016/j.gca.2006.02.030
  26. Petit J.C.J., Jong J.D., Chou L., and Mattielli N. (2008) Development of Cu and Zn isotope MC-ICP-MS measurement: Application to suspended particulate matter and sediments from the Scheldt Estuary. Geostandards and Geoanalytical Research, 32(2), 149-166. https://doi.org/10.1111/j.1751-908X.2008.00867.x
  27. Pokrovsky O.S., Viers J., Emnova E.E., Kompantseva E.I., and Freydier R. (2008) Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr)oxides: Possible structural control. Geochimica et Cosmochimica Acta, 72, 1742-1757. https://doi.org/10.1016/j.gca.2008.01.018
  28. Shield W.R., Murphy T.J., and Garner E.L. (1964) Absolute isotopic abundance ratio and the atomic weight of a refernece sample of copper. Journal of research of the national bureau of standards, 68A(6), 589-592. https://doi.org/10.6028/jres.068A.056
  29. Sossi P.A., Halverson G.P., Nebel O., and Eggins S.M. (2015) Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination. Geostandards and Geoanalytical Research, 39(2), 129-149. https://doi.org/10.1111/j.1751-908X.2014.00298.x
  30. Takano S., Tanimizu M., Hirata T., and Sohrin Y. (2014) Isotopic constraints on biogeochemical cycling of copper in the ocean. Nature Communications, 5:5663 doi:10.1038/ncomms6663.

Cited by

  1. Measurement of sulfur isotope ratios in trace amounts of dissolved sulfate by MC-ICP-MS vol.57, pp.1, 2021, https://doi.org/10.14770/jgsk.2021.57.1.99