Browse > Article
http://dx.doi.org/10.9727/jmsk.2016.29.4.221

Copper Isotope Measurements Using a Neptune MC-ICP-MS  

Park, Sanghee (Division of Earth and Environmental Sciences, Korea Basic Science Institute)
Ryu, Jong-Sik (Division of Earth and Environmental Sciences, Korea Basic Science Institute)
Shin, Hyung Seon (Division of Earth and Environmental Sciences, Korea Basic Science Institute)
Kil, Youngwoo (Department of Energy and Resources Engineering, Chonnam National University)
Jo, Yunsoo (Department of Energy and Resources Engineering, Chonnam National University)
Publication Information
Journal of the Mineralogical Society of Korea / v.29, no.4, 2016 , pp. 221-227 More about this Journal
Abstract
Copper is an essential transition metal involving in various biogeochemical processes. With the recent advances in analytical techniques and mass spectrometry, such as MC-ICP-MS, it is possible to measure Cu isotopes, which allows us to understand various biogeochemical processes in detail. Nonetheless, few studies have been performed in South Korea. In this study, we compared two purification methods previously reported using an anion exchange resin ($AG^{(R)}$ MP-1M), developed the best method in our lab environment, and then verified it by measuring Cu isotopic compositions in two USGS geological reference materials (BHVO-2 and BIR-1a). Although all matrix cations causing mass bias were effectively removed through both two methods with the yield of better than 95%, the method using the mixture of HCl and $H_2O_2$ only displays Cu isotopic compositions, in excellent agreement with reported values within the error. The method developed in this study is expected to be commonly applied to earth and environmental sciences.
Keywords
Copper; Cu isotopes; MC-ICP-MS; geological reference materials;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mathur R., Titley S., Barra F., Brantley S., Wilson M., Phillips A., Munizaga F., Maksaev V., Vervoort J., and Hart G. (2009) Exploration potential of Cu isotope fractionation in prophyry copper deposits. Journal of Geochemical Exploration, 102, 1-6.   DOI
2 Mason T.F.D., Weiss D.J., Chapman J.B., Wilinson J.J., Tessalina S.G., Spiro B., Horstwood M.S.A., Spratt J., and Coles B.J. (2005) Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chemical Geology, 221, 170-187.   DOI
3 Mason T.F.D., Weiss D.J., Horstwood M., Parrish R.R., Russell S.S., Mullane E., and Coles B.J. (2004) High-precision Cu and Zn isotope analysis by plasma source mass spectrometry Part 1. Spectral interferences and their correction. Journal of Analytical Atomic Spectrometry, 19, 209-217.   DOI
4 Moeller K., Schoenberg R., Pedersen R.B., Weiss D., and Dong S. (2012) Calibration of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for Zinc isotope amount ratio determinations. Geostandards and Geoanalytical Research, 36(2), 177-199.   DOI
5 Moynier F., Koeberl C., Beck P., Jourdan F., and Telouk P. (2010) Isotopic fractionation of Cu in tekrites. Geochimica et Cosmochimica Acta, 74, 799-807.   DOI
6 Moynier F., Albared F., and Herzog G.F. (2006) Isotopic composition of zinc, copper, and iron in lunar samples. Geochimica et Cosmochimica Acta, 70, 6103-6117.   DOI
7 Petit J.C.J., Jong J.D., Chou L., and Mattielli N. (2008) Development of Cu and Zn isotope MC-ICP-MS measurement: Application to suspended particulate matter and sediments from the Scheldt Estuary. Geostandards and Geoanalytical Research, 32(2), 149-166.   DOI
8 Bermin J., Vance D., Archer C., and Statham P.J. (2006) The determination of the isotopic composition of Cu and Zn in seawater. Chemical Geology, 226, 280-297.   DOI
9 Albarede F. (2004) The stable isotope geochemistry of Copper and Zinc. In: Johnson C.M. Beard B.L. and Albarede F.(eds), Geochemistry of non-traditional stable isotopes. Reviews Mineralogy and Geochemistry, 55, 409-427.   DOI
10 Balistrieri L.S., Borrok D.M., Wanty R.B., and Ridley W.I. (2008) Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water. Geochimica et Cosmochimica Acta, 72, 311-328.   DOI
11 Pokrovsky O.S., Viers J., Emnova E.E., Kompantseva E.I., and Freydier R. (2008) Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr)oxides: Possible structural control. Geochimica et Cosmochimica Acta, 72, 1742-1757.   DOI
12 Dekov V.M., Rouxel O., Asael D., Halenius U., and Munnik F (2013) Native Cu from the oceanic crust: Isotopic insights into native metal origin. Chemical Geology, 359, 136-149.   DOI
13 Shield W.R., Murphy T.J., and Garner E.L. (1964) Absolute isotopic abundance ratio and the atomic weight of a refernece sample of copper. Journal of research of the national bureau of standards, 68A(6), 589-592.   DOI
14 Sossi P.A., Halverson G.P., Nebel O., and Eggins S.M. (2015) Combined separation of Cu, Fe and Zn from rock matrices and improved analytical protocols for stable isotope determination. Geostandards and Geoanalytical Research, 39(2), 129-149.   DOI
15 Takano S., Tanimizu M., Hirata T., and Sohrin Y. (2014) Isotopic constraints on biogeochemical cycling of copper in the ocean. Nature Communications, 5:5663 doi:10.1038/ncomms6663.   DOI
16 Bigalke M., Weyer S., and Wilcke W. (2011) Stable Cu isotope fractionation in soils during oxic weathering and podzolization. Geochimica et Cosmochimica Acta, 75, 3119-3134.   DOI
17 Bigalke M., Weyer S., Kobza J., and Wilcke W. (2010) Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil. Geochimica et Cosmochimica Acta, 74, 6801-6813.   DOI
18 Borrok D.M., Wanty R.B., Ridley W.I., Wolf R., Lamothe P.J., and Adams M. (2007) Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement. Chemical Geology, 242, 400-414.   DOI
19 Chapman J.B., Mason T.F.D, Weiss D.J., Coles B.J., and Wilkinson J.J. (2005) Chemical separation and isotopic variations of Cu and Zn from five geological reference materials. Geostandards and Geoanalytical Research, 30(1), 5-16.
20 Herzog G.F., Moynier F., Albarede F., and Berezhnoy A.A. (2009) Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele's hairs, and a terrestrial basalt. Geochemica et Cosmochimica Acta, 73, 5884-5904.   DOI
21 Hou Q.H., Zhou L., Gao S., Zhang T., Feng L., and Yang L. (2016) Use of Ga for mass bias correction for the accurate determination of copper isotope ratio in the NIST SRM 3114 Cu standard and geological samples by MC-ICPMS. Journal of Analytical Atomic Spectrometry, 31, 280-287.   DOI
22 Kimball B.E., Mathur R., Dohnalkova A.C., Wall A.J., Runkel R.L., and Brantley S.L. (2009) Copper isotope fractionation in acid mine drainage. Geochimica et Cosmochimica Acta, 73, 1247-1263.   DOI
23 Liu S.A., Teng F.Z., Li S., Wei G.J., Ma J.L., and Li D. (2014b) Copper and iron isotope fractionation during weathering and pedogenesis: Insights from saprolite profiles, Geochimica et Cosmochimica Acta, 146, 59-75.   DOI
24 Larner F., Rehkamper M., Coles B.J., Kreissig K., Weiss D.J., Sampson B., Unsworth C., and Strekopytov S. (2011) A new separation procedure for Cu prior to stable isotope analysis by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 26, 1627-1632.   DOI
25 Li W., Jackson S.E., Pearson N.J., and Graham S. (2010) Copper isotopic zonation in the Northparkes porphyry Cu-Au deposit, SE Australia. Geochimica et Cosmochimica Acta, 74, 4078-4096.   DOI
26 Li W., Jackson S.E., Pearson N.J., Alard O., and Chappell B.W. (2009) The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia. Chemical Geology, 258, 38-49.   DOI
27 Liu S.A., Huang J., Liu J., Wӧrner G., Yang W., Tang Y.J., Chen Y., Tang L., Zheng J., and Li S. (2015) Copper isotopic composition of the silicate Earth. Earth and Planetary Science Letters, 427, 95-103.   DOI
28 Liu S.A., Li D., Li S., Teng F.Z., Ke S., He Y., and Lu Y. (2014a) High-precision copper and iron isotope analysis of igneous rock standards by MCICP-MS, Journal of Analytical Atomic Spectrometry, 29, 122-133.   DOI
29 Lv Y., Liu S.A., Zhu J.M., and Li S. (2016) Copper and zinc isotope fractionation during deposition and weathering of highly metalliferous black shales in central China. Chemical Geology, (In Press) http://dx.doi.org/10.1016/j.chemgeo.2016.01.016.   DOI
30 Marechal C.N., Telouk P., and Albarede F. (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology, 156, 251-273.   DOI