• Title/Summary/Keyword: 암반 특성

Search Result 1,298, Processing Time 0.026 seconds

Flow Dimensional Analysis for Constant Pressure Injection Test (정압주입시험을 이용한 지하수유동차원 해석)

  • 이은용
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.149-165
    • /
    • 1993
  • Nowadays, the field hydraulic test is still an only method to evaluate groundwater characteristics in subsurface. The results of hydraulic test are very important for the concept model of fracture hydrogeology as well as the geometric pattern of fractures. The hydraulic tests performed in Korea are generally analysed under such assumption as steady radial flow in homogeneous aquifer or along simple geometry of fractures. Also the transmissivity measured in a fixed interval length is equivalent to a sum of individual fracture transmissivities in test legth. The boundary effects of weH hydraulics and the geometry of flow paths are hardly obtained from the test results analysed by a steady flow method. To circumvent this problem, the flow dimensional analysis was attempted from the results of constant pressure injection test carried out in a fractured granite area. A comparison of the hydraulic conductivity values from the transient and steady analysis shows that the latter is about a factor of 2~3 higher than the former. However, it was possible to analyse a flow dimension of each test interval from flow rate variation with time. The upper part of the bedrock(<10m deep) indicates an open boundary and the flow dimension shows nearly steady states, while the lower part of the bedrock(>25m deep) is characterized as sublinear flow dimension with a dosed boundary. In one of the test sections(15m deep), the flow dimension was changed from linear flow to spherical flow. From the experience of this study, one of the immediate problems to be solved is to enhance the field testing equipments, i.e., an accurate flowmeter with autorecording and a pressure detecting device to be able to install in the test section.

  • PDF

Growth Dynamics of the Surfgrass, Phyllospadix Japonicus on the Southeastern Coast of Korea (한반도 동해남부연안에 자생하는 말잘피, 게바다말의 생장 특성)

  • PARK, JUNG-IM;KIM, JAE HOON;KIM, JONG-HYEOB;KIM, MYUNG SOOK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.548-561
    • /
    • 2019
  • The surfgrass Phyllospadix japonicus is a dominant seagrass species playing critical ecological roles on the eastern coast of Korea. However, few studies have been conducted on the ecological characteristics of this species, generally due to the turbulent water conditions in its habitat. In this study, to examine the growth dynamics of P. japonicus, we investigated monthly changes in morphological characteristics, density, biomass, and leaf productivity as well as changes in the underwater irradiance, water temperature, and water column nutrient concentrations of its habitat from August 2017 to July 2018. Underwater irradiance and water temperature showed clear seasonal changes increasing in spring and summer and decreasing in fall and winter. Nutrient availability fluctuated substantially, but did not display any distinct seasonal trend. Morphological characteristics, shoot density, biomass, and leaf productivities of P. japonicus exhibited significant seasonal variations, increasing in spring and decreasing in fall months. Spadix of P. japonicus occurred from March to August, with the maximum spadix percentage(15.8%) occurred in May 2018. The average leaf productivity of P. japonicus per shoot and area were 2.1 mg sht-1 d-1 and 7.5 g m-2 d-1, respectively. The optimum water temperature for the growth of P. japonicus in this study was between 13-14℃. The productivity of P. japonicus was not correlated with underwater irradiance, water temperature and nutrient concentrations. These results suggest that the study site provide sufficient amount of underwater irradiance, suitable water temperature range and nutrients for the growth of P. japonicus.

Characteristics and Energy Absorbing Capacity for Rockfall Protection Fence from In-Situ Rockfall Tests (현장 낙석실험을 통한 낙석방지울타리의 특성 및 성능 평가)

  • 구호본;박혁진;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.111-121
    • /
    • 2001
  • Rockfall protection fences are used for diminishing rockfall damage in roads side slopes. In order to install the fences in effective way, the conditions of rock slopes and total predicted impact energy of fa11ing rock should be considered. However, the fences have been constructed without any consideration for lithology, height and slope angle of rock slope in Korea. In addition, the information about the performance of the protection fences, which should be evaluated by in-situ test or laboratory test in order to check out the practical use in the field, is not available. Therefore, in design manual for the rockfall protection fence, the specific details for the installation of this type of fence are not provided yet. The full sized rockfall in situ test was carried out for the calculation of falling energy of rock and the evaluation of the maximum energy absorbing capacity of fence. For this test, the rock slopes whose heights are about 20 m and dip angle of 65 degree, have been chosen. This is because those geometries are mean height and slope angle of most road cut slopes along Korean national highway. Based on the preliminary simulation procedure, four different sizes of concrete ball (0.7, 1.3, 2.3 and 4.3 ton) were prepared and flour different types of protection fence were constructed. The results of this test provide information about the maximum energy absorbing capacity of the fence, kinetic energy of rockfall and restitution coefficient, and these results can be utilized in the establishment of rockfall fence design and construction manual.

  • PDF

Evaluation of dynamic ground properties using laterally impacted cross-hole seismic test (횡방향 발진 크로스홀 탄성파 시험을 이용한 지반의 동적 특성 평가)

  • Mok Young-Jin;Sun Chang Guk;Kim Jung-Han;Jung Jin-Hun;Park Chul-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.155-175
    • /
    • 2005
  • Soil and rock dynamic properties such as shear wave velocity (VS), compressional wave velocity (VP) and corresponding Poisson's ratio ( v ) are very important geotechnical parameters in predicting deformational behavior of structures as well as practicing seismic design and performance evaluation. In an effort to measure the parameter efficiently and accurately, various bore-hole seismic testing techniques have been, thus, developed and used during past several decades. In this study, cross-hole seismic testing technique which is known as the most reliable seismic method was adopted for obtaining geotechnical dynamic properties. To perform successfully the cross-hole test for rock as well as soil layers regardless of the ground water level, spring-loaded source which impact laterally a subsurface ground in vertical bore-hole was developed and applied at three study areas, which contain four sites composed of two existing port sites and two new LNG storage facility sites. The geotechnical dynamic properties such as VS, VP and v with depth were efficiently determined from the laterally impacted cross-hole seismic tests at study sites, and were provided as the fundamental parameters for the seismic performance evaluation of the existing ports and the seismic design of the LNG storage facilities.

  • PDF

Mineralogical Characteristics of Fracture-Filling Minerals from the Deep Borehole in the Yuseong Area for the Radioactive Waste Disposal Project (방사성폐기물처분연구를 위한 유성지역 화강암내 심부 시추공 단열충전광물의 광물학적 특성)

  • 김건영;고용권;배대석;김천수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.99-114
    • /
    • 2004
  • Mineralogical characteristics of fracture-filling minerals from deep borehole in the Yuseong area were studied for the radioactive waste disposal project. There are many fracture zones in the deep drill holes of the Yuseong granite, which was locally affected by the hydrothermal alteration. According to the results of hole rock analysis of drill core samples, $SiO_2$ contents are distinctly decreased, whereas $Al_2$$O_3$ and CaO contents and L.O.I. values are increased in the -90 m∼-130 m and -230 m∼-250 m zone, which is related to the formations of filling minerals. Fracture-filling minerals mainly consist of zeolite minerals (laumontite and heulandite), calcite, illite ($2M_1$ and 1Md polytypes), chlorite, epidote and kaolinite. The relative frequency of occurrence among the fracture-filling minerals is calcite zeolite mineral > illite > epidote chlorite kaolinite. Judging from the SEM observation and EPMA analysis, there is no systematic change in the texture and chemical composition of the fracture-filling minerals with depth. In the study area, low temperature hydrothermal alteration was overlapped with water-rock interactions for a long geological time through the fracture zone developed in the granite body. Therefore the further study on the origin and paragenesis of the fracture-filling minerals are required.

Physical habitat and chemical water quality characteristics on the distribution patterns of ecologically disturbing fish (Largemouth bass and Bluegill) in Dongjin-River Watershed (동진강 수계에서 생태 교란어종(큰입배스, 불루길)의 분포에 대한 물리적 서식지 및 화학적 수질 특성)

  • Kang, Yu-Jin;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.2
    • /
    • pp.177-188
    • /
    • 2019
  • The objective of this study was to analyze the distribution patterns of two exotic disturbing fish species (largemouth bass, Micropterus salmoides and bluegill, Lepomis macrochirus), their physical habitat features, and chemical water qualities from 13 sites of Dongjin River. The relationships between the fish distributions and water chemistry and physical habitat characteristics (i.e., bottom substrate) were evaluated by comparing dominant vs. absent regions of largemouth bass and bluegill. The relative abundance of the two species decreased sharply with decreased in the water quality in terms of BOD, PO4-P and pH, but not with NO3-N and conductivity. The bluegill showed no difference in habitat preference between the two regions with regard to the bottom structure, while the largemouth bass had significant differences in the bottom structures of silt, coarse gravels and boulders. The dominant species were Zacco platypus (14.6%), Lepomis macrochirus (14.0%), and Micropterus salmoides (9.8%) in the order of relative abundance, indicating that exotic species (24% in total) dominated the fish community, perhaps ensuing large ecological disturbances on the ecosystem. In conclusion, the results of this study suggest that the distribution of the two exotic species may be largely influenced by water quality of organic matter and nutrient pollutions.

Evaluation on Weathering Characterization on Rock Types Using Artificial Weathering Test (인공풍화시험을 이용한 암종별 풍화특성 평가)

  • Heo, Yeul;Kang, Changwoo;Kwon, Youngcheul;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.8
    • /
    • pp.23-32
    • /
    • 2017
  • For exposed slopes, the weathering degree over time has a major effect on the engineering properties of rocks and the slope stability. Rocks are gradually changed by weathering into soil over time, and the resulting physical, chemical and mechanical changes of rocks affect the engineering stability of the slope. However, there are not many ways to objectively evaluate the weathering degree of a slope. In this study, therefore, to investigate the weathering characteristics of rocks, granite, gneiss and shale distributed in the Chungbuk region were sampled by weathering stage and changes in their component minerals and tissues were investigated. Furthermore, artificial weathering was induced using the freezing and thawing test and quantitatively investigated through porosity and absorption rate. In addition, the changes of microcracks due to artificial weathering were evaluated through box fractal dimension ($D_B$). Through mineralogical study the phase change of constituting minerals, the growth of secondary minerals, the development of micro-cracks and the fabric changes due to weathering were observed. The mineralogical, chemical and engineering evaluations of the weathering degree through the experimental results in this study are expected to be useful for analyzing the weathering characteristics and causes by rock type and for proposing a methodology to evaluate the degradation of physical properties comparatively and quantitatively.

Comparison of the Characteristics of Mix Design and the Performance of Shotcrete Used in Expressway Tunnel Construction Sites (고속도로 터널 숏크리트 현장배합 특성 및 성능 비교 연구)

  • Lee, Sangdon
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.532-541
    • /
    • 2019
  • Even though shotcrete is a main support for securing the stability of tunnel, the performance of shotcrete is not properly checked due to various difficulties arisen from the characteristics of materials themselves which constitute shotcrete, such as steel fibers and accelerators, and the on-site quality control. In this study, the actual conditions of shotcrete applied to expressway tunnel construction sites were tried to find out, and then some improvement was tried to derive. For this purpose, the characteristics of steel fibers and accelerators supplied to the expressway construction sites were investigated. Also, shotcrete specimens were prepared at the tunnel sites and performance tests were carried out. For steel fiber, domestic production states were investigated, and carbon content and tensile strength were measured using the steel fibers collected in the construction sites. For three types of accelerators such as aluminate, cement mineral and alkali-free, basic properties and total amount of alkali contents were analyzed. Shotcrete specimens were prepared using on-site shotcrete machine with regard to mix designs and types of accelerators. Using these specimens, uniaxial compression tests and flexural tests were performed. As the results, compressive strength, flexural strength, flexural toughness, and etc. were compared with types of acclerators and mix designs.

Ground Characterization of the Cheongju Granite Area Using the Geophysical Methods (물리탐사를 이용한 청주 화강암 지역의 지반특성 파악)

  • Kim Ji-Soo;Han Soo-Hyung;Seo Yong-Seok;Lee Yong-Jae
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2005
  • This research is aimed at investigating the ground characterization of the Cheongju granite area using the geophysical methods. Test site was chosen from the building site in Chungbuk University, Chongju, Chungbuk province. Furthermore, geophysical methods are employed on the outcrops in the east to map the distribution of fault and intrusion and reveal the degree of weathering. The subsurface structure mapped from seismic re-fraction survey mainly consists of two units of weathered soil and rock. Threshold of the units were determined on the basis of seismic velocity of 800 m/s, supported from the standard classification table. From the results of standard penetrating test(SPT), these units are found to show medium-high and high density, respectively. Weathering soil is subdivided in unsaturated layer and saturated layer with thresholds of seismic velocity (500 m/s) and resistivity (200 ohm-m). In particular, unsaturated layer is again classified into dry and wet portions using the GPR section. The boundary between unsaturated and saturated weathering soils corresponds to the groundwater table at depth of approximately 5~6.2 m, which is well correlated with the one from drill-core data. However, bedrock is not delineated by geophysical methods. In the GPR section, fault and intrusion observed on the outcrop are revealed not to extend to the building site. With respect to weathering degree, the outcrop characterized by low resistivity and velocity corresponds to the grade of 'completely weathered' from the geotechnical investigations.

Biological Characteristics and Tissue Structure of a Crustose Coralline Lithophyllum Alga (해조류 무절산호조 혹돌잎의 생물학적 특성 및 조직구조)

  • Kang, Ji-Young;Benliro, Ianthe Marie P.;Lee, Ik-Joon;Choi, Ji-Young;Joo, Jin;Choi, Yoo Seong;Hwang, Dong Soo;Hong, Yong-Ki
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.341-346
    • /
    • 2013
  • The disappearance of seaweed flora in some rocky areas, which is known as algal whitening, barren ground, coralline flats, or deforested areas, is associated with some species of coralline algae. To determine the biological characteristics of a representative species of crustose coralline alga, the 18S rDNA gene was sequenced to identify the genus Lithophyllum. According to its morphological and distributional characteristics, it was deduced to be L. yessoense. Viability was measured using triphenyl tetrazolium chloride and showed high viability from December to February. Culture conditions of $16^{\circ}C$, a 16 hr light, 8 hr dark cycle, and 30 ${\mu}E/m^2/s$ light intensity were optimal for maintaining the viability of the alga for up to five days. Included in the fatty acids was 9.7% ${\omega}$-3 eicosapentaenoic acid. An electron microscopy scan of the surface structure revealed round craters about 3.6 ${\mu}m$ in diameter, which were covered with rough, irregular, and angular polygon-shaped structures about 1.0 to 3.7 ${\mu}m$ in size. Based on the composition and structure found in our study, biomimetic coralline alga might become an environmentally friendly antifouling material against the attachment of soft foulants.