Browse > Article

Mineralogical Characteristics of Fracture-Filling Minerals from the Deep Borehole in the Yuseong Area for the Radioactive Waste Disposal Project  

김건영 (한국원자력연구소 심부지질환경특성연구분야)
고용권 (한국원자력연구소 심부지질환경특성연구분)
배대석 (한국원자력연구소 심부지질환경특성연구분)
김천수 (한국원자력연구소 심부지질환경특성연구분야)
Publication Information
Journal of the Mineralogical Society of Korea / v.17, no.1, 2004 , pp. 99-114 More about this Journal
Abstract
Mineralogical characteristics of fracture-filling minerals from deep borehole in the Yuseong area were studied for the radioactive waste disposal project. There are many fracture zones in the deep drill holes of the Yuseong granite, which was locally affected by the hydrothermal alteration. According to the results of hole rock analysis of drill core samples, $SiO_2$ contents are distinctly decreased, whereas $Al_2$$O_3$ and CaO contents and L.O.I. values are increased in the -90 m∼-130 m and -230 m∼-250 m zone, which is related to the formations of filling minerals. Fracture-filling minerals mainly consist of zeolite minerals (laumontite and heulandite), calcite, illite ($2M_1$ and 1Md polytypes), chlorite, epidote and kaolinite. The relative frequency of occurrence among the fracture-filling minerals is calcite zeolite mineral > illite > epidote chlorite kaolinite. Judging from the SEM observation and EPMA analysis, there is no systematic change in the texture and chemical composition of the fracture-filling minerals with depth. In the study area, low temperature hydrothermal alteration was overlapped with water-rock interactions for a long geological time through the fracture zone developed in the granite body. Therefore the further study on the origin and paragenesis of the fracture-filling minerals are required.
Keywords
radioactive waste disposal; fracture-filling mineral; laumontite; illite; chlorite; epidote;
Citations & Related Records
연도 인용수 순위
  • Reference
1 노진환 (2001) 국내산 제올라이트의 부가가치 향상을 위한 광물특성 평가방안, 광물과 산업, 14, 1-17
2 Bailey, S.W. (1980) Summary of the AIPEA nomenclature committee. Can. Mineral., 18, 143-150.
3 Bird, D.K., Schiffman, P., Elders, W.A., Williams, A.E., and McDowell, S.D. (1984) Calc-silicate mineralization in active geothermal systems. Econ. Geol., 79, 671-695.
4 Bird. D.K., Cho, M., Janik, C.J., Liou, J.G., and Caruso, L.J. (1988) Compositional, order/disorder and stable isotope characteristics of Al-Fe epidote, state 2-14 drill hole, Salton Sea geothermal system. Jour. Geophys. Res., v. 93-B11, 13, 135-13, 144.
5 Caruso, L.J., Bird, D.K., Cho, M., and Liou, J.G. (1988) Epidote-bearing veins in the state 2014 drill hole: Implications for hydrothermal fluid composition. Jour. Geophys. Res., v. 93-B11, 13, 123-13, 133.
6 Deer, W.A., Howie, R.A., and Zussman, J. (1986) Disilicates and ring silicates. In: Rock-Forming Minerals, vol. 1B. 2nd ed., Longman, London, 3-134.
7 Parkhurst, D.L. (1995) User's guide to PHREEQC-A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations, U.S. Geol. Surv., Water-Res. Invest. Report 95-4227 142p.
8 Srodon, J. and Eberl, D.D. (1984) Micas in metamorphic rocks. In: Bailey, S.W., Ed., Micas. Reviews in Mineralogy. vol. 13, Min. Soc. of Am., 495-544.
9 Laird, J. (1988) Chlorites: metamorphic petrology. In: Bailey, S.W., Ed., Hydrous Phyllosilicates. Reviews in Mineralogy. vol. 19, Mineralogical Society of America, 405-453.
10 Maruyama, S., Cho, M., and Liou, J.G. (1986) Experimental investigations of blueschist-greenschist transition equilibria: pressure dependence of Al2O3 contents in sodic amphiboles - A new geobarometer. In: Evans, B.W. and Brown, E.H., Eds., Blueschists and Eclogites, Geol. Soc. Am. Memoir 164, 1-16.
11 Guidotti, C.V. (1984) Micas in metamorphic rocks. In: Bailey, S.W., Ed., Micas. Reviews in Mineralogy. vol. 13, Min. Soc. of Am., 357-468.
12 Miller, B.E. and Ghent, E.D. (1973) Laumontite and barian-strontian heulandite from the Blairmore groups (Cretaceous), Alberta. Can. Mnier., 12, 188-192.
13 Power Reactor and Nuclear Fuel Development Corporation (PNC) (1992) First Progress Report on Research and Development on Geological Disposal of High-level Radioactive Waste, PNC TN1410 93-059.
14 노진환 (2003) 천연 제올라이트의 수환경 개선용 기능성 소재로의 활용에 관한 연구 (I): 국내산 제오라이트의 양이온 교환 특성. 한국광물학회지, 16, 135-149
15 한국원자력연구소 (2003) 고준위폐기물처분기술개발, KAERI/RR-2333/2002, 과학기술부, 589p
16 Bird, D.K. and Helgeson, H.C. (1981) Chemical interaction of aqueous solutions with epidote-feldspar mineral assemblages in geologic systems. II. Equilibrium constraints in metamorphic/geothermal porcesses. Am. Jour. Sci., 281, 576-614.
17 정지곤, 서만철, 김경수, 황형중, 1997, 유성온천지역의 지질구조 및 지온분포 연구. 지질공학회지, 7, 173-189
18 박희인, 이준동, 정지곤 (1977) 한국지질도 유성도폭 (1:50,000) 및 도폭설명서. 자원개발연구소, 21p
19 Noh, J. H. (1991) Paragenesis and phase relations of mesolite-natrolite-laumontite from the Tertiary mafic tuffs in Yeongil area., Jour. Geol. Soc. Korea, 27, 136-144.
20 Pipping, F. (1966) The dehydration and chemical composition of laumontite. Miner. Soc. India. IMA, 159-166.
21 Zhong, W.J.S., Hughes, J.M., and Scotford, D.M. (1985) The response of chlorite to metasomatic alteration in Appalachian ultramafic rocks. Can. Mineral., 23, 443-446.
22 이상만, 김형식, 나기창, 1980, 한국지질도 대전도폭 (1:50,000) 및 도폭설명서. 자원개발연구소, 26p
23 Cathelineau, M. (1988) Cation site occupancy in chlorites and illites as a function of a temperature. Clay Miner., 23, 471-485.
24 Shikazono, N. (1984) Compositional variations in epidote from geothermal areas. Geochem. Jour., 18, 181-187.
25 Velde, B. (1985) Clay Minerals: A Physico-chemical explanation of their occurrence. Elsevier Scientific Publishing Company. 59-104.
26 김경수, 김천수, 배대석 (2002) 등연속체매질로서의 화강암지역의 유효수리전도도 산출. 지질공학, 12, 319-332