• Title/Summary/Keyword: 암반 굴착

Search Result 607, Processing Time 0.026 seconds

Comparative analysis of cutting performance for basalt and granite according to abrasive waterjet parameters (연마재 워터젯 변수에 따른 현무암 및 화강암 절삭성능 비교분석)

  • Park, Jun-Sik;Cha, Hyun-Jong;Jo, Seon-Ah;Jung, Ju-Hwan;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.395-409
    • /
    • 2022
  • To overcome the limitation of conventional rock excavation methods, the excavation with abrasive waterjet has been actively developed. The abrasive waterjet excavation method has the effect of reducing blasting vibration and enhancing the excavation efficiency by forming a continuous free surface on the rock. However, the waterjet cutting performance varies with rock fracturing characteristics. Thus, it is necessary to analyze the cutting performance for various rocks in order to effectively utilize the waterjet excavation. In this study, cutting experiments with the high pressure waterjet system were performed for basalt and granite specimens. Water pressure, standoff distance, and traverse speed were determined as effective parameters for the abrasive waterjet cutting. The cutting depth and width of basalt specimens were analyzed to compare with granite results. The averaged cutting depth of basalt was shown in 41% deeper than granite; in addition, the averaged cutting width of basalt was formed by 18.5% narrower than granite. The results of this study are expected to be useful basic data for applying rock excavation site with low strength and high porosity such as basalt.

건물 신축 공사장 소음 저비용 저감 방안

  • 최재남;손기상
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.463-466
    • /
    • 2002
  • 건설현장의 특성상 굴착공사는 필수공정이고 비록 말뚝공사가 없다할지라도 암반굴착 등 진동소음 발생여지는 언제나 존재하고 있다고 할 수 있다 이에 대한 국부적인 암반발파, 파쇄에 따른 소음감소 또한 큰 문제를 야기할 수 있다. 건설현장 자체적으로 민원 발생에 대비하여 인접 주택 지점에서 소음 계측을 하고 허용값 초과 여부를 판단하는 실행을 하고 있으나 주민이 느끼는 체감 소음은 조금 다를 수도 있어서 민사소송으로까지 확대되어 현장경영 및 공정에 큰 타격을 가하고 회사 이미지 실추로까지 이어질 수 있고 막대한 보상비 지급이 뒤따를 수도 있는 상태로까지 확대될 수 있다.(중략)

  • PDF

Modeling the Effect of Excavation Sequence and Reinforcement on the Response of Tunnels with Discontinuous Deformation Analysis Method (불연속 변형 해석법에 의한 굴착순서 및 지반보강이 터널의 거동에 미치는 영향 모델링)

  • 김용일;김영근
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • This paper presents two new extensions to the DDA method. The extensions consist of sequential loading or unloading and rock reinforcement by rockbolts, shotcrete or concrete lining. Examples of application of the DDA method with the new extensions are presented. Simulations of the underground excavation of the Unju Tunnel of Kyungbu High Speed Railway Project in Korea were carried out to evaluate the influence of excavation sequence and reinforcement on the tunnel stability. The results of the present study indicate that improper selection of excavation sequence could have a destabilizing effect on the tunnel stability. On the other hand, reinforcement by rockbolts and shotcrete can stabilize the tunnel. It is found that, in general, the DDA program with the three new extensions can now be used as d practical tool in the design of underground structures. In particular, phases of construction (excavation, reinforcement) can now be simulated more realistically.

  • PDF

Influencing factors for abrasive flow rate and abrasive flow quality of abrasive injection waterjet systems for tunnel excavation (터널굴착용 투입형 연마재 워터젯 시스템의 연마재 투입량과 유동성에 미치는 영향 인자)

  • Joo, Gun-Wook;Oh, Tae-Min;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.417-430
    • /
    • 2014
  • A new rock excavation method using an abrasive waterjet system is under development for efficiently creating tunnels and underground spaces in urban areas. In addition, an appropriate abrasive flow rate and abrasive flow quality are important for the new rock excavation (cutting) method using an abrasive waterjet system. This study evaluated the factors influencing the abrasive flow rate and abrasive flow quality, specifically the abrasive pipe height, length, tortuosity and inner diameter, through experimental tests. Based on the experimental test results, this study suggested optimal conditions for the abrasive flow rate and abrasive flow quality. The experimental results can be effectively utilized as baseline data for rock excavation methods using an abrasive waterjet system in various construction locations such as tunnels near urban surroundings, utility tunnels, and shafts.

암석절리에서의 유체유동과 불연속 암반의 수리전도성에 관한 이론적 수치해석적 연구

  • 송명규;주광수;문현구
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1994.03a
    • /
    • pp.70-74
    • /
    • 1994
  • 암반내 지하수의 흐름은 공학적인 측면에서 중요한 역할을 한다. 지하공간 개발 및 터널건설에 있어서 지하수의 유출은 굴착과 보강공사의 진행을 대단히 어렵게 할 뿐만 아니라 구조물의 안정성에 심각한 문제를 야기시키기도 한다. 이는 다양한 원인에 의해서 생성된 암반내 불연속면의 존재에 기인한다. 불연속 암반의 지하수 유동해석에는 크게 두 가지 접근방식이 사용되어 왔다. (중략)

  • PDF

A Study on the Rock Pressure Wedge Failure During Ground Excavation (대규모 지하굴착시 쐐기파괴로 인하여 발생하는 토압에 관한 연구)

  • 이승호
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • The geological characteristics of Korea are that we can encounter the rock layer only after 10m of excavation, methods to presume the rock pressure distribution of the rock layer is urgently needed. When using the existing empiric science of Terzaghi-Peck, Tschebotarioff to measure the rock pressure of the rock layer, underestimate the real strength because of the cohesion is ignored. Therefore calculating the horizontal sliding force of wedge block, which includes the dips and shear strength of discontinuities and surcharge load etc., think to be to getting a closer rock stress of the real rock pressure acting upon the earth structure in rock mass. This research use Coulomb soil pressure theory assuming that the backfill soil will yield wedge failure when it has cohesion, applying Prakash-Saran(l963), and then it uses equilibrium of force and shear strength $\tau$=c+$\sigma$tan $\Phi$ of the cliscontinuities. Analyzing shear strength and dips of cliscontinuities using calculated theory according to the status of discontinuities aperture, we were able to find out that because the cohesion and friction angle of the rock layer itself is large enough, how the dip directions and dips facing the excavation face is the only factor deciding whether or not the rock stress is applied. The evaluated theory of this research should be strictly estimated, so that the many parameters such as c, $\Phi$value, types and structures of rock class, excessive lateral pressure, dynamic load, earthquake, needed later when calculating shear strength of discontinuities and especially the ground water effect acting on rock layer should be coumpted with many measuring data achieve at the insite to study the application.

  • PDF