• Title/Summary/Keyword: 암반의 붕락

Search Result 42, Processing Time 0.027 seconds

Evaluation of Cave-in Possibility of a Shallow Depth Rock Tunnel by Rock Engineering Systems and Uumerical Analyses (암반공학시스템과 수치해석을 이용한 저심도 암반터널에서의 붕락 발생 가능성 평가)

  • Kim, Man-Kwang;Yoo, Young-Il;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.236-247
    • /
    • 2009
  • Overpopulation has significantly increased the use of underground spaces in urban areas, and led to the developments of shallow-depth underground space. Due to unexpected rock fall, however, it is very necessary to understand and categorize the rock mass behaviors prior to the tunnel excavation, by which unnecessary casualties and economic loss could be prevented. In case of cave-in, special attention should be drawn since it occurs faster and greater in magnitude compared to rock fall and plastic deformation. Types of cave-in behavior are explained and categorized using seven parameters - Uniaxial Compressive Strength (UCS), Rock Quality Designation (RQD), joint surface condition, in-situ stress condition, ground water condition, earthquake & ground vibration, tunnel span. This study eventually introduces a new index called Cave-in Behavior Index (CBI) which explains the behavior of cave-in under given in-situ conditions expressed by the seven parameters. In order to assess the mutual interactions of the seven parameters and to evaluate the weighting factors for all the interactions, survey data of the experts' opinions and Rock Engineering Systems (RES) were used due to lack of field observations. CBI was applied to the tunnel site of Seoul Metro Line No. 9. UDEC analyses on 288 cases were done and occurrences of cave-in in every simulation were examined. Analyses on the results of 288 cases of simulations revealed that the average CBI for the cases when cave-in for different patterns of tunnel support was estimated by a logistic regression analysis.

기초, 굴착

  • 정교철;오대열
    • Proceedings of the KSEG Conference
    • /
    • 2004.03a
    • /
    • pp.24001-24056
    • /
    • 2004
  • 암반 기초에서 발생 가능한 파괴형태로는 $\circled1$전단파괴(Shear failure) $\circled2$관입파괴(punch failure) $\circled3$붕락(Collapse) $\circled4$균열파괴 (cracking) $\circled5$분쇄상파괴 (crushing) $\circled6$쐐기상파괴 (wedging)를 들 수 있다. 그림 2.4-1에서 (a)는 연암층 내에서의 전형적인 전단파괴를 나타내고, (b)는 소성암반 상부에 강성암반이 놓였을 때의 전단파괴를 보여준다. (c)는 2층으로 구성된 지반에서의 전단파괴 양상이며, (d)는 편심하중이 작용할 때의 전단파괴이다. (e)는 사면 상에서의 활동에 의한 파괴유형이다. (f)는 절리가 발달한 풍화된 암반내로 진행되는 관입파괴를 보여주고 있다. (e)는 연암지반 내부로 강성암반이 관입되어 파괴된 모습이다. (h)는 풍화된 화강암에서의 관입파괴 유형이다. (i)는 석회암층 내부의 지하공동에 의한 붕락현상을 보여주고 있으며, (j)는 지하수의 유동에 의해 형성된 공동으로 인한 붕락파괴를 나타낸다. (k)는 균열파괴, (l)은 분쇄상 파괴, (m) 쐐기상 파괴, (n)은 단층선을 따른 파괴 유형이다. (중략)

  • PDF

Analysis of Collapse Shape and Cause in the Highway Tunnel (고속도로터널의 붕락유형과 원인 분석)

  • Kim, Nag-Young;Kim, Sung-Hwan;Chung, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.13-24
    • /
    • 2000
  • The collapse shapes and causes of tunnel in the highway were analyzed and reinforced methods of tunnel were investigated in the paper. Collapse shapes of tunnel are divided into three types such as subsurface failure, small scale wedge failure and slickenside strata failure. These three shapes consist of 35%, 50%, and 15%, respectively. The 85% of collapse was located near the entrance and exit of tunnel. The 15% was located at the intersection of emergency laybys. When tunnel collapses are analyzed by the failure concept, sliding failure amounts to more than 83%.

  • PDF

A Numerical Study for Ground Stability Assessment in ○○Mine (○○광산의 지반 안정성 평가를 위한 수치해석적 연구)

  • Son, Min;Moon, Hyun-Koo
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.484-492
    • /
    • 2016
  • This study is the numerical analysis for the ground stability assessment in ${\bigcirc}{\bigcirc}$mine. The subsidence factors applied to the numerical analysis were as follows. First, the deterioration of the rock mass properties by excavation of the disturbed zone. Second, using the average lateral pressure coefficient of Korea. Third, a study of the mine history. Fourth, the excavating collapsed rock mass in numerical analysis based on the assumption that the rock mass around the goaf was collapsed due to the mining. The developed methods were applied to the cross section (5+10) of the actual subsidence in ${\bigcirc}{\bigcirc}$mine. The feasibility of the numerical analysis methods was confirmed by providing the same results as those of the actual subsidence. Next, the developed methods were applied to the cross section (3+10) that had a high probability of subsidence and the ground stability was evaluated. The analysis results show that the vertical displacement for the 5+10 cross section occurs at a maximum of 46 mm, whereas the analysis results show that the vertical displacement for the 3+10 cross section occurs at a maximum of 7 mm. Hence, it is concluded that the probability for subsidence is low.

Problems and Reinforcement Measures for Rock Structures in Fault Zone (단층대 구간에서의 암반구조물의 문제와 보강대책)

  • Kim, Young-Geun;Han, Byeong-Hyeon;Sin, Young-Wan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.170-181
    • /
    • 2007
  • 암반내 존재하는 단층은 암반거동에 중대한 영향을 미치게 되며, 특히 단층내에 충전물이 협재되어 있거나, 파쇄대가 넓게 발달한 경우에는 암반구조물의 안정성에 보다 심각한 문제를 가져오는 경우가 많다. 이는 단층의 불연속적인 거동과 충전물의 거동이 복합적으로 작용하게 되며, 장기적인 시간을 두고 나타나기 때문이다. 본 검토에서는 단층의 공학적 특성을 분석하고, 단층대 구간에서는 보강설계 사례 및 단층대 구간에서의 붕락사고로 인하여 문제가 발생한 현장사례분석을 통하여 단층이 암반사면이나 터널과 같은 암반 구조물에 미치는 영향을 검토하였다. 이를 통하여 단층과 점토 그리고 지하수 등의 복합거동에 의한 장기적이고 잠재적인 거동을 수반할 수 있는 단층의 공학적 문제점을 고찰하였다.

  • PDF

A Basic Study on the Tunnel Collapse Analysis and the Reasonable Inforence of Tunnel Collapse Considering a Characteristic of Engineering Geology (지질공학적 특성을 고려한 터널 붕락 분석과 합리적인 터널 붕락 추론에 관한 기본 연구)

  • 마상준;서경원;배규진;이석원
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.117-127
    • /
    • 2000
  • 터널 시공과 굴착과정에서 파쇄대, 절리, 연약대, 균열 등 암반에서의 불연속면은 중요한 역할을 한다. 본 연구에서는 지반 고유의 특징인 불확실성에 의한 터널 설계와 시공 과정에서 겪는 많은 시행오차를 최소화하기 위해서 국내의 터널 붕락 현장의 지반조사 자료를 분석하여 터널 붕락 유형 및 규모를 제시할수 있는 Geo-predict 시스템을 개발하였다. Geo-predict 시스템은 총 104개 터널 붕괴/붕락자료(국외84개, 국내20개)를 분석한 자료를 테이터베이스로 인공신경망 학습을 토해서 터널 붕괴 형태와 규모를 추론하는 시스템이다. 본 논문에서는 Geo-predict의 개발과정 및 구성.기능을 소개하였으며 104개 터널 현장 자료를 지반조건별로 분석하고 이를 데이터베이스화하여 인공신경함을 이용한 추론 시스탬을 구축하고, 2개 고속전철 터널현장과 1개 지하철 시공현장에 적용성 평가를 실시하여, 터널의 붕락 가능 및 붕락 규모를 추론하였다.

  • PDF

New hybrid stochastic-deterministic rock block analysis method in tunnels (터널의 신 하이브리드 추계학적-확정론적 암반블럭 해석기법)

  • Hwang, Jae-Yun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.265-274
    • /
    • 2010
  • In many tunnels, falling or sliding of rock blocks often occur, which cannot be predicted because of the complexity of rock discontinuities and it has brought an exponential increase in costs and time to manage. It is difficult to estimate the properties of rock masses before the tunnel excavation. The observational design and construction method in tunnels has been becoming important recently. In this study, a new hybrid stochastic-deterministic rock block analysis method for the prediction of the unstable rock blocks before the tunnel excavation is proposed, and then applied to the tunnel construction based on actual rock discontinuity information observed in the field. The comparisons and investigations with the analytical results in the tunnel construction have confirmed the validity and applicability of this new hybrid stochastic-deterministic rock block analysis method in tunnels.

Case Study on the Tunnel Collapse at the Shallow Depth (NATM터널 저토피 구간에서의 막장붕락 사례연구)

  • Baek Ki-Hyun;Roh Jong-Ryun;Kim Yong-Il;Cho Sang-Kook;Hwang Nag-Youn
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.102-110
    • /
    • 2005
  • ○ ○ tunnel that is located at Iksan - Jangsu freeway ○ ○, has collapsed during construction at the valley with shallow depth. Although, the site investigations, such as TSP, drilling exploration and so of indicated the presence of discontinuities in this section. The RMR was upgraded and the construction were carried out because that not only actual rock qualities were relatively good during construction but also the tunnel foe was stabilized. However, the tunnel was collapsed at the same time blasting of full face, and surface and underground water was infiltrated due to the settlement of the upper part of the tunnel face. To restore the collapsed section, 3-d tunnel stability analysis was performed and suitable reinforcement methods were chosen. The cavity of the upper tunnel face was stabilized by means of UAM and ALC injection. And the settlement was restored using L.W grouting method.

A Study on Engineering Characteristics of Weak Rock Ground happened TBM Jaming accident in Tunnelling (TBM 터널 굴진시 Jamming이 발생되는 지반의 공학적 특성에 대한 연구)

  • Yu, Gil-Hwan
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.45
    • /
    • pp.60-70
    • /
    • 2008
  • Mechanized tunnelling by TBMs has been extensively adopted for last two decades. Nevertheless, only few case histories have been reported. Unlike NATM tunnels, the case histories of the weak zone have been seldom reported for the mechanized tunnelling, even in the other countries. In this study, a collapse of TBM tunnel occurred in the severely altered weak rock zones between volcaniclastic rocks and granitic rocks was briefly described. A systematic geotechnical investigation, which was performed to examine the cause of the collapse, was carried out at the site and then characteristics of the rocks in the zones were evaluated. Moreover, This study propose a guide line of estimateing the possibility of collapse in TBM tunnels through comparing experimental results with surveying results of general rocks.

  • PDF