• Title/Summary/Keyword: 알칼리-골재 반응

Search Result 94, Processing Time 0.03 seconds

알칼리 골재반응성 평가시험 방법의 이모저모

  • Lee, Jong-Yeol
    • Cement
    • /
    • s.190
    • /
    • pp.32-38
    • /
    • 2011
  • 콘크리트에서 알칼리골재반응은 내구성에 악 영향을 주는 일종의 암이라고 표현할 수 있다. 잠복기간이 길고, 균열이 나타나는 시기도 매우 오래 걸리기 때문이다. 이러한 현상이 1940 년대 알려지면서, 미국 ASTM에는 1950년에 모르타르봉 시험방법이, 1952년에 화학법이 각각 시험방법 규격으로 제정되었다. 국내에서는 한국도로교통연구원을 비롯한 전문연구기관 등에서 화학법 및 모르타르봉 방법으로 연구한 결과, 화학법에서는 일부 골재가 반응성이 있는 것으로 보고 되었으나, 모르타르봉 방법에서는 대상 골재에서 유해가능성이 낮은 것으로 보고되었다. 또한, 그동안은 구조물에서 알칼리골재반응에 의한 피해사례도 보고되지 않았고, 골재의 품질도 양호한 것으로 알려져 왔다. 그러나, 최근들어 서해안 고속도로 일부 구간에서 알칼리골재반응에 의한 포장노면에 균열 및 스폴링 등 심각한 피해사례가 보고되면서 국내에서도 관심이 높아지기 시작하였다. 특히 일본에서는 제 63회 시멘트기술대회 (2009년 5월 22일)에서 팽창기구의 재검토에 대한 이야기가 패널토의에서 제기되었고, 일부 시험방법의 이야기도 나왔다. 그동안의 골재는 현재의 규격만으로도 설명이 가능했는데, 최근의 골재들은 설명이 잘 안 되는 경우가 종종 있다는 이야기다. 이런 이야기들은 일본 지인들과 기술교류를 하면서 많은 이야기를 나누었고, 또한 우연히 문헌들을 독해하던 중 이런 이야기들을 경험한 문헌인 일본 태평양시벤트에서 발간되는 CEM'S 자료를 찾았기에 발췌 정리한 것이다.

  • PDF

Concrete Pavement Expansion due to Alkali-Aggregate Reaction and Damage Prevention of Bridges (알칼리-골재반응에 의한 콘크리트 포장 팽창과 그에 따른 교량손상 감소방안)

  • Woo, Jeong-Won;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.67-73
    • /
    • 2017
  • The concrete pavement slabs that suffer expansion due to the Alkali-Aggregate Reaction(AAR) increase and the increase consequently causes unexpected displacement of bridge abutment. As the expansion due to the AAR is greater than that due to the temperature change, lethal load can act on bridge abutment. Therefore appropriate preventive measures may be necessary. The degree of expansion by AAR depends on the severity of AAR and geometry condition of concrete pavement and road structure. In order to prevent damage to bridge, it is effective to release the expansion force of the concrete. It would be advantageous to replace the concrete pavement with asphalt for a long section of concrete pavement.

Expansion Behavior of Aggregate of Korea due to Alkali-Silica Reaction by ASTM C 1260 Method (ASTM C 1260 실험에 의한 국내 골재의 알칼리-실리카 반응 팽창 특성)

  • Yun, Kyong-Ku;Hong, Seung-Ho;Han, Seung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.431-437
    • /
    • 2008
  • The concrete pavement at Seohae Expressway in Korea has suffered from serious distress, only after four to seven years of construction. The deterioration of ASR has seldom been reported per se in Korea, because the aggregate used for the cement concrete has been considered safe against alkali-silica reaction so far. The purpose of this study is to examine the expansion behavior of aggregates of Korea due to alkali-silica reaction by ASTM C 1260 standard method of the accelerated mortar bar test (AMBT), stereo microscopic analysis, scanning electronic microscope (SEM) analysis, and electron dispersive X-ray spectrometer (EDX) analysis. The results are presented as it follows. The accelerated mortar bar test (AMBT) showed that mica granite and felsite of igneous rocks, aroke, red sandstone and shale of sedimentary rocks, slate of metamorphic rock, and dendrite and quartz of mineral rock showed more expansion than 0.1% at 14 days. But, some sedimentary rocks and metamorphic rocks expanded more than 0.1% at 28 days even though they were less than 0.1% at 14 days. The mortar bars, which showed more than occurred 0.1% expansion, resulted in cracking on surface. SEM and EDX analysis confirmed that the white gel was a typical reaction product of ASR. The ASR gel in Korea mainly consisted of Silicate (Si) and Potassium (K) from the cement. The crack in the concrete pavement was caused by ASR. It seems that Korea is no longer safe zone against alkali-silica reaction.

An Experimental Study on Alkali-Silica Reaction of Alkali-Activated Ground Granulated Blast Furnace Slag Mortars (알칼리 활성 고로슬래그 미분말 모르터의 알칼리-실리카 반응에 관한 실험적 연구)

  • Kim, Young-Soo;Moon, Dong-Il;Lee, Dong-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • The purpose of this study was to investigate the expansion of alkali-activated mortar based on ground granulated blast furnace slag containing reactive aggregate due to alkali-silica reaction. In addition, this study was particularly concerned with the behavior of these alkaline materials in the presence of reactive aggregates. The experimental program included expansion measurement of the mortar bar specimens, as well as the determination of the morphology and composition of the alkali-silica reaction products by using scanning electron microscopy(SEM), and energy dispersive x-ray(EDX). The experiment showed that while alkali-activated ground granulated blast furnace slag mortars showed expansion due to the alkali-silica reaction, the expansion was 0.1% at Curing Day 14, showing that it is safe. After the accelerated test, SEM and BEM analysis showed the presence of alkali-silica gel and rim around the aggregate and cement paste. According to the EDX, the reaction products decreased markedly as alkali-activated ground granulated blast furnace slag was used. In addition, for the substitutive materials of mineral admixture, a further study on improving the quality of alkali-activated ground granulated blast furnace slag is needed to assure of the durability properties of concrete.

알칼리-골재팽창을 최소화시키는 포틀랜드 제올라이트 시멘트

  • 한국양회공업협회
    • Cement
    • /
    • s.108
    • /
    • pp.57-60
    • /
    • 1987
  • 이 논문에서는 통상의 포졸란 대신에 제올라이트 물질 즉, 화산 응회암을 적절히 분쇄한 후 혼합해서 만든 시멘트의 특성 변화에 대해 논하였다. 이러한 치환이 알칼리-골재 팽창 반응을 최소화시키고 장기강도를 향상시키는 장점이 있다는 사실도 밝혀냈다. 특히 제올라이트를 미리 열처리해서 첨가했을 때 이러한 팽창감소 효과가 현저하다는 것도 발견하였다. 강도증진 효과는 포졸란 유리상의 활성도에 비해 제올라이트 광물의 활성도가 높기 때문으로 해석되며 팽창의 감소는 비정질 수화 규산염이 먼저 알칼리와 반응을 하는 성질이 있기 때문으로 판단된다.

  • PDF

A Fundamental Study on the Potential of Alkali-Aggregate Reaction according to KS F 2545 and ASTM C 1260 Test Methods (KS F 2545와 ASTM C 1260 시험법에 따른 알칼리골재 잠재가능성에 관한 연구)

  • Baek, Chul-Seoung;Seo, Jun-Hyung;Kim, Young-Jin;Cho, Kye-Hong;Kim, Kun-Ki;Lee, Jin-Young
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.18-27
    • /
    • 2020
  • Chemical experiment KS F 2545 and Physical experiment ASTM C 1260 has been accomplished to estimate the potential of alkali aggregate. Used for testing aggregate samples are forest aggregate and recycled aggregate which collected in Gangwon province Samcheok and Pyeongchang, Jeollabuk province Gimje and Kochang, and Gyeongsangnam province Goryeong. As the results of chemical experiment confirmed that if silicate rock and carbonate rock are mixed, reduction in alkalinity is increase. So it has been identified that case makes a disturb at the result of alkali aggregate reaction. In 9 out of the 62 aggregate samples check dissolved silica exceeding 100 mmol/ℓ. and mortar bar length increase rate confirmed that 5 of 9 chemical method aggregates were 0.1~0.2% and 2 aggregates were 0.2%. As a result of the alkaline aggregate reaction test using the chemical method and the mortar bar method, the aggregates showing alkali aggregate reaction are sandstone and tuff aggregates. Therefore, Alkali aggregate reaction tests are required to use clastic sedimentary rocks and volcanic pyroclastic rocks aggregates.

An Analytical Study on the Expansion Rates of Mortar-bars (ASTM C 227-90) for Basalt and Various Aggregates (모르타르봉 시험(ASTM C 227-90)에 의한 현무암 골재 등의 팽창률 분석 연구)

  • 정지곤;김경수
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.309-320
    • /
    • 2003
  • Since the concrete covers most structures in modern architecture and it is composed of aggregates of about 75%, the appropriate selection of aggregates is valuable for the durability of concrete. A major cause of the expansion of mortar-bar measured by ASTM C 227-90 has been accounted by the alkali-aggregate reaction. This study carried out designed experiments on some aggregates including basalt and sandstone, to classify the expansion factors into the alkali-aggregate reaction, the increase of the gel pore volume, and the interstitial water that could expand physically the cracks or foliation developed in aggregates itself. The quantitative analyses of expansion by each factor indicated that the interstitial water and/or the alkali-aggregate reaction had major roles in the concrete expansion. Thus, if the supplied aggregates have deteriorated the structural framework, it is important to investigate the exact causes through this suggested method.

Evaluation of Alkali-Silica Reactivity for Aggregates in Korea according to Test Methods (시험방법에 따른 국내 골재의 알칼리-실리카 반응성 평가)

  • Yun, Kyong-Ku;Kim, Seong-Kwon;Hong, Seung-Ho;Han, Seung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.689-696
    • /
    • 2008
  • The purpose of this study was to evaluate the alkali-silica reactivity for aggregates in Korea according to test methods: accelerated mortar bar test (AMBT) by ASTM C 1260; chemical test by KS F 2545 (ASTM C 289). The results are as follows: The AMBT (ASTM C 1260) results showed that two (2) igneous rocks (two mica granite and felsite), three (3) sedimentary rocks (arkose, red sandstone and shale), two (2) metamorphic rock (slate and vitric tuff), one (1) mineral (quartz) showed more expansion than 0.1% at 14 days. But, some sedimentary rocks and metamorphic rocks expanded more than 0.1% at 28 days even though they were less than 0.1% at 14 days. Therefore, it is necessary to extend the experimental dates more than 14 days to evaluate the possibility of alkali-aggregate reactivity. The chemical test (KS F 2545) results showed that five (5) igneous rocks (andesite, diabase, granite porphyry, muscovite granite and diorite) were indicative of potentially deleterious expansion, while two (2) igneous rocks (diorite porphyry and quartz porphyry) were possible indicative of expansion, and three (3) igneous rocks (biotite granite, two mica granite and felsite) were indicative of innocuous reactivity. The above results showed that the results from chemical method (KS F 2545) and AMBT (ASTM C 1260) had little relationship.

Preventive Measures on Alkali-Silica Reaction of Crushed Stones (쇄석 골재의 알칼리-실리카 반응 방지 대책)

  • Jun Ssang-Sun;Lee Hyo-Min;Seo Ki-Young;Hwang Jin-Yeon;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.129-137
    • /
    • 2005
  • In Korea, due to the insufficiency of natural aggregates and increasing needs of crushed stones, it is necessary to examine the alkali-silica reaction of the crushed stones. The reaction produces an alkali-silica reaction gel which can imbibe pore solution and swell to generate cracks that are visible In affected concrete. In general, crushed stones are tested by petrograptuc examination, chemical method and mortar-bar method, but the most reliable method Is mortar-bar test. This study tested alkali-silica reactivity of crushed stones of various rock types using ASTM C 227 and C 1260, and compared the results of two test methods. This study also analyzed effects of particle size and grading of reactive aggregate on alkali-silica reaction expansion of mortar-bar. The effectiveness of mineral admixtures to reduce detrimental expansion caused by alkali-silica reaction was investigated through the ASTM C 1260 method. The mineral admixtures used were nv ash, silica fume, metakaolin and ground granulated blast furnace slag. The replacement ratios of 0, 5, 10, 15, 25 and $35\%$ were commonly applied for all the mineral admixtures and the replacement ratios of 45 and $55\%$ were additional applied for the admixtures that could maintain workability. The results indicate that replacement ratios of $25\%$ for ay ash, $10\%$ for silica fume, $25\%$ for metakaolin or $35\%$ for ground granulated blast furnace slag were most effective to reduce alkali-silica reaction expansion under the experimental conditions.

Microstructural Study of Mortar Bar on Akali-Silica Reaction by Means of SEM and EPMA Analysis (알칼리-실리카 반응에 의한 모르타르 봉의 SEM과 EPMA 분석을 통한 미세구조 연구)

  • Jun, Ssang-Sun;Lee, Hyo-Min;Jin, Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.531-537
    • /
    • 2009
  • In this study alkali reactivity of crushed stone was conducted according to the ASTM C 227 that is traditional mortar bar test, and C 1260 that is accelerated mortar bar test method. The morphology and chemical composition of products formed in mortar bar, 3 years after the mortar bar tests had been performed, were examined using scanning electron microscopy (SEM) with secondary electron imaging (SEI) and electron probe microanalysis (EPMA) with backscattered electron imaging (BSEI). The crushed stone used in this study was not identified as being reactive by ASTM C 227. However, mortar bars exceeded the limit for deleterious expansion in accelerated mortar bar test used KOH solution. The result of SEM (SEI) analysis, after the ASTM C 227 mortar bar test, confirmed that there were no reactive products and evidence of reaction between aggregate particles and cement paste. However, mortar bars exposed to alkali solution (KOH) indicated that crystallized products having rosette morphology were observed in the interior wall of pores. EPMA results of mortar bar by ASTM C 227 indicated that white dots were observed on the surface of particles and these products were identified as Al-ASR gels. It can be considered that the mortar bar by ASTM C 227 started to appear sign of alkali-silica reaction in normal condition. EPMA results of the mortar bar by ASTM C 1260 showed the gel accumulated in the pores and diffused in to the cement matrix through cracks, and gel in the pores were found to be richer in calcium compared to gel in cracks within aggregate particles. In this experimental study, damages to mortar bars due to alkali-silica reaction (ASR) were observed. Due to the increasing needs of crushed stones, it is considered that specifications and guidelines to prevent ASR in new concrete should be developed.