• Title/Summary/Keyword: 알루미늄 보강재

Search Result 31, Processing Time 0.035 seconds

Bearing Reinforcing Effect of Concrete Block with a Round End according to the Application of Aluminum Stiffener (알루미늄 보강재 적용에 따른 원형 단부 콘크리트 블록의 지압 보강 효과)

  • Seok Hyeon Jeon;Tae-Yun Kwon;Jin-Hee Ahn
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.38-46
    • /
    • 2023
  • In this study, a bearing test was performed and analytically evaluated to evaluate the bearing performance according to the application of the aluminum stiffener in round-end concrete. In the bearing strength test, the change in bearing performance due to the aluminum stiffener using the aluminum form for manufacturing concrete with round-end, and the steel anchor bolts for member movement and assembly was confirmed. The FE analysis model was identically configured to the experimental conditions, and the result was compared with the experiment. Also, the crack patterns and stress behavior were confirmed. In addition, the effect of strength change of the aluminum stiffener on the round-end concrete was also evaluated analytically. The bearing strength of the round-end concrete increased by about 20% due to the aluminum stiffener, and it was confirmed that the steel anchor bolt did not affect the bearing strength. The maximum load and crack patterns shown as a result of FE analysis were similar to those of the experiment. As a result of FE analysis according to the strength change of the aluminum stiffener, the maximum load change according to the increase and decrease of the strength of the aluminum stiffener by 10% and 20% was evaluated to have no significant effect at a maximum of about 4% compared to before the strength change.

Studying on the Hybrid FRP Stiffener for the Performance Improvement of Strengthened RC Beam (철근콘크리트 보의 성능개선을 위한 Hybrid FRP 보강재 연구)

  • Ahn, Mi-Kyoung;Lee, Sang-Moon;Jung, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.243-244
    • /
    • 2010
  • Reinforced concrete beam are very diverse materials that are used to bending reinforcement. Recently the case of FRP flexural reinforcement is actively being used is an excellent weight - rigidity. However, use of FRP bending reinforcement in brittleness material properties of concrete in an actual field application causes destruction of detachment and attachment is being considered as a major cause of destruction. For hybrid laminating plates, tensile and three-point bending tests were performed considering various designs and fabricating methods for hybrid FRP plates. Tensile property of each test specimen was investigated and the research parameter of hybrid laminating plates considered here is the combining ratio of fiber to aluminum contents.

  • PDF

Impact Characteristics of AFRP Reinforced Concrete Slab (AFRP 보강 콘크리트 슬래브의 충격 특성에 관한 연구)

  • Park, Sung-Jin
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.492-500
    • /
    • 2018
  • Purpose: In this paper, based on this background, the main purpose of studying the behavior of concrete slab reinforced with new material fiber in impact loading is investigated by AFRP using aluminum fiber. Results: Research on the use of new materials as reinforcing materials for concrete members has been carried out in many fields such as flexural and shear tests under static loading, fatigue loading under cyclic loading, and application to PC beams. However, And the issue of plate elements is still at a basic stage. Conclusion: In this paper, the dynamic behavior of reinforced concrete slabs is investigated by using AFRP rod reinforced with aluminum fiber.

The Performance Improvement of Strengthened RC Beams Using an Inserted Plate (FRP-콘크리트 경계면 삽입플레이트 활용을 통한 휨 보강 철근콘크리트 보의 성능개선)

  • Ahn, Mi-Kyoung;Lee, Sang-Moon;Jung, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.73-74
    • /
    • 2010
  • The objective of this research is to improve the flexural capacity of RC Beams. To delay prematured tension failure of concrete specimen and to improve flexural capacity of RC beam by increasing the contribution of FRP strengthening plates, a method for inserting a laminate to the interface between concrete and FRP materials. This method makes it possible to increase overall flexural performance of RC beam by FRP plate compared to normal RC beams and RC beam strengthened by bonded FRP plates. The new bonding technique is applicable to all types of reinforcement available FRP laminate, and in principle is also applicable to materials other than FRP.

  • PDF

Centrifuge Model Experiments on Behavior of Reinforced Earth Retaining Walls A Study due to Variation of Reinforcements (보강토 옹벽의 거동에 대한 원심모형실험 -보강재 변화에 의한 연구)

  • Heo, Yol;Ahn, Sang-Ro;Lee, Cheo-Keun
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.45-54
    • /
    • 1993
  • In this paper, the behaviors of reinforced earth retaining walls according to material properties of reinforcement were performed through the centrifuge model tests. Skin element was used flexible aluminum plate in the process of tests. And reinforcements were used with aluminum foil strips and non -woven polyester sheets. As a result of it, model retaining wall utilizing non-woven polyester sheets than aluminum foil strips was supported at high stress level, and maximum horizontal displacement value of skin element was 0.6H height at model walls. In the other hand, coefficient relation diagram for evaluation of horizontal displacement according to skin element location was proposed using test results.

  • PDF

A Study on the Vibration Characteristics of the Eccentrically Stiffened Plate Attached an Orthogonal Stiffener at Arbitrary Angle (직교 보강재가 임의의 각도로 부착된 편면 보강평판의 진동 특성에 관한 연구)

  • 정병환;김찬묵
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.172-178
    • /
    • 1995
  • 보강평판은 평판에 각종 보강재를 용접등의 방법에 의해서 종방향, 횡방향, 경사 또는 임의의 방향으로 부착시켜 굽힘 및 비틀림 강성을 향상시킨 구조요소이다. 이러한 구조요소는 구조적 필요성이나 경량화 설계에 따라 선박의 deck, 철도 차량, 항공기 및 자동차 등의 각종 구조물에서 부하능력 및 경제성을 증대시키기 위하여 널리 사용되고 있고, 또한 자동차용 오일팬, 가전기기의 케이싱과 모터의 케이싱등에도 사용되고 있다. 최근 현장에서는 이러한 구조물의 진동 감소 및 방진 문제가 큰 관심사가 되고 있다. 본 논문은 정사각형 알루미늄 평판에 +자 형태의 Box Beam 보강재를 편면 보강하고 4변 자유단의 경계 조건을 설정하였다. 보강재는 유한요소 정식화 과정을 통하여 평판 요소에 등가시키고, 2차원의 평판 구조로 보강 평판을 모델링하고 구조해석 프로그램인 ANSYS를 이용하여 해석하였다. 실험은 Impact Test에 의해서 주파수 응답 함수(FRF)를 각 시편에 대해서 구하고 이를 해석의 고유진동수와 비교하였다. 그리고 보강재가 임의의 각도로 평판에 부착되었을 때 고유진동수의 변화와 진동 모드(mode shape)를 분석하였다.

  • PDF

On the Structural Strength of Composite Blade for Offshore Wind Turbine by using the Aluminum Foam (발포 알루미늄을 이용한 해상풍력 블레이드 복합재의 구조강도 연구)

  • Na, S.S.;Song, H.C;Shim, C.S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.187-187
    • /
    • 2010
  • 최근 해상풍력 블레이드가 대형화됨에 따라 보다 가볍고 강한 재료가 요구되고 있다. 현재 주로 사용되고 있는 복합재는 발사우드나 PVC 폼 등을 코어소재로 하고, 유리섬유나 탄소섬유 등을 보강섬유로 사용하고 있다. 본 연구에서는 현재 사용되고 있는 복합재에 대한 특성을 알아보고, 최근 흡음, 충격 및 열에 강한 발포 알루미늄을 이용한 복합재를 해상풍력 블레이드 제조에 적용하여, 구조 강도 실험을 실시함으로써 기존 복합재와 구조 강도 및 비용 등을 비교 검토하여 우수한 복합재를 제시하고자 한다. 이를 위해 대형구조물인 블레이드를 제작하기 위해 적절한 크기의 발포 알루미늄을 상호 접합하기 위한 방법을 연구하고자 하며, 목포대학교에서 보유중인 만능재료시험기(100 Ton)를 활용하여 인장, 압축, 굽힘 실험을 실시하고, 스킨재 변화, 코어재의 밀도와 두께 변화를 고려하여 다양한 복합재의 강도를 비교하고자 한다. 또한, 기존에 사용되고 있는 복합재와 발포 알루미늄을 이용한 복합재의 재료비 및 가공비를 추정하고 경제적인 복합재를 제시하고자 한다.

  • PDF

Development of Seismic Performance Evaluation Reinforcement by FRP and Ductile Material Layered Composites (섬유강화플라스틱과 연성재 적층복합체로 구성된 내진성능보강재의 개발)

  • Chang, Chun-Ho;Jang, Kwang-Seok;Kim, Ki-Hong;Joo, Chi-Hong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1486-1491
    • /
    • 2010
  • Recently, the frequency and magnitude of the earthquake have increased. The structural safety of the public facilities such as bridges and tunnels etc. which were not concerned for earthquake resistant design are increased. Fiber reinforcement polymer that has been frequently studied for seismic retrofit has advantage as seismic reinforcement material, but it has disadvantage of the brittleness. Therefore, the investigation of safety and seismic reinforcement are required. In this study, new FRP-ductile material layered composites proposed to seismic performance reinforced of subway tunnel. Tensile test of FRP-ductile material layered composites showed that Maximum tensile force of FRP-ductile using Aluminum is similar to existing FRP reinforcement material and maximum strain was increased. In case of application of domestic subway tunnel which need ductility, layered composites of FRP-Aluminum is estimated effectively for increase of seismic performance.

  • PDF

Bulging of Reinforced Retaining Walls (보강토옹벽의 배부름에 관한 실험적 연구)

  • Ju, Jae-Woo;Park, Jong-Beom;Na, Hyun-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.45-53
    • /
    • 2011
  • Recently reinforced retaining walls secure their position as a stabilized method of construction replacing concrete retaining walls gradually. However, in the event of using extensible reinforcement, a bulging phenomenon can be happened in the front of reinforced retaining walls. Bulging of reinforced retaining walls means a phenomenon that, in the height of an arbitrary block, the upper part and the lower part of the block don't secure a relative position in design. Therefore, it is judged that it has the necessity to be examined in design since reinforcement needs metamorphosis to some degree to display tensile force. Therefore, the study examined about how extensibility of reinforcement had an effect on movement of reinforced retaining walls through a small-scale model test with aluminum rods. The study used Changhoji(traditional korean paper made from mulberry bark) as inextensible reinforcement and membrane as extensible reinforcement. As the result of the test, rigidity of reinforcement had a lot of effects on displacement of reinforced retaining walls and generally occurrence point of the maximum horizontal displacement had a tendency transferring to the upper part of walls according to rigidity of reinforcement was increased.

An Performance Evaluation of Seismic Retrofitted Column Using FRP Composite Reinforcement for Rapid Retrofitting (긴급시공이 가능한 FRP 복합재료 보강재로 보강된 기둥의 내진성능평가)

  • Kim, Jin-Sup;Seo, Hyun-Su;Lim, Jeong-Hee;Kwon, Min-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.47-55
    • /
    • 2014
  • As increasing number of large-size earthquake around Korean peninsula, many interests have been focused to the earthquake strengthening of existing structures. The brittle fracture of Non-seismic designed columns lead to full collapse of the building. In the past, cross-sectional extension method, a steel plate reinforcing method and fiver-reinforced method are applied to Seismic Rehabilitation Technique mainly. However, the reinforcement methods have drawbacks that induce physical damage to structures, large space, long duration time. So, in this study, performance evaluation of previously developed FRP seismic reinforcement which do not induce physical damage and short duration time was enforced. The specimens were constructed with 80% downscale. FRP seismic reinforcement are manufactured of glass fiber or aluminum plate with holes and glass fiber. From the experiment results, seismic performance of specimens which reinforced with FRP seismic reinforcement were increased.