• Title/Summary/Keyword: 알데하이드

Search Result 237, Processing Time 0.023 seconds

Characteristics of PM10, VOCs and Aldehydes Levels in Nail and Hair Shops (네일샵미용실의 실내공기 중 미세먼지(PM10), 휘발성 유기화합물 (VOCs), 알데하이드류(Aldehydes)의 농도 및 업소 특성에 따른 상관성 분석)

  • Lee, Boram;Kuag, Sooyoung;Yang, Wonho;Jun, Sang il;Kim, Jung-su;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.6
    • /
    • pp.509-515
    • /
    • 2017
  • Objectives: The purpose of this study was to assess the indoor levels of $PM_{10}$, VOCs and aldehydes in nail shop and hair salon. Methods: The field survey was conducted for 52 hair salons 52 nail shops, and 26 shop-in-shops in Seoul and Daegu city. The field technicians investigated characteristics of each shop including operating time, indoor volume, ventilation and so on. Indoor concentrations of $PM_{10}$, VOCs and aldehydes, indoor temperature and humidity were measured in 12 hair salons, 12 nail shops and 6 shop-in shops. MP Surveryor II (Graywolf, USA) was used to measure $CO_2$ concentration, temperature and humidity for 8 hours. $PM_{10}$ concentrations were measured by minivolume air sampler with Teflon quartz filter ($0.2{\mu}m$ pore size, ${\varphi}$ 47 mm, Graseby-Anderson TEF-DISKTM) for 6 hours. VOCs passive sampler (OVM 3500) was used to collect VOCs for 8 hours and analyzed by GC/MSD. Results: The $CO_2$ concentrations were $759.4{\pm}58.2$ ppm in nail shops, $731.0{\pm}72.5$ ppm in hair salons, and $656.4{\pm}31.2$ ppm in shop-in-shops. The $PM_{10}$ concentrations were $27.5{\pm}14.2{\mu}g/m^3$ in nail shops, $33.1{\pm}6.3{\mu}g/m^3$ in hair salons, and $39.0{\pm}26.9{\mu}g/m^3$ in shop-in-shops. TVOCs concentrations were $3085.4{\pm}1667.8{\mu}g/m^3$ in nail shops, $2131.1{\pm}617.3{\mu}g/m^3$ in hair salons, and $1550.3{\pm}529.0{\mu}g/m^3$ in shop-in-shops. TVOCs concentrations in nail shops were significantly higher than those in hair salons and shop-in-shops (p=0.002). Formaldehyde concentrations were $60.8{\pm}36.6{\mu}g/m^3$ in nail shops, $89.1{\pm}55.4{\mu}g/m^3$ in hair salons, and $45.1{\pm}22.5{\mu}g/m^3$ in shop-in-shops. Conclusion: TVOCs concentrations in nail shop were the highest among others. TVOC concentrations in all stores exceeded indoor air quality stand of indoor air quality control in public-use facilities, etc act.

Measurement of Formaldehyde in the Atmosphere using a Dual-channel Glass Coil Sampler (이중 채널 유리코일 샘플러를 이용한 대기 중 포름알데하이드 측정)

  • Park Seung-Shik;Hong Sang-Bum;Lee Jai-Hoon;Cho Sung-Yong;Kim Seung-Jai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.259-266
    • /
    • 2006
  • A dual-channel glass coil sampling technique was used to measure hourly formaldehyde concentration in the ambient air. The dual-channel coil sampling assembly consists of three parts; an all-pyrex 28-turn coil made of 0.2-cm internal diameter glass tubing for gas-liquid contact and scrubbing of soluble gases, an inlet section upstream of the coil for introducing sample air and scrubbing solution, and a widened glass section downstream of the coil for gas-liquid separation. The scrubbing solution used was a dilute aqueous DNPH (dinitrophenylhydrazine) solution. Hourly concentration of formaldehyde was determined at a Gwangju semi-urban site during two intensive studies between September and October using the dual channel glass-coil/DNPH sampling technique and HPLC (High Performance Liquid Chromatography) analysis. The mean concentration was 1.7($0.4{\sim}4.7$) and 3.0($0.5{\sim}19.1$) ppbv for the September and October intensives, respectively, which are considerably low, compared to those measured in polluted urban areas around the world including several urban areas of Korea. The diurnal variation showed significant increase of formaldehyde in the daytime suggesting the dominance of formation of formaldehyde due to photochemical oxidation of methane and other hydrocarbons. An increase in the formaldehyde sometimes in the night might be due to an increase in primary source, i.e. traffic emissions. It was also found that rapid increase in formaldehyde levels from 3.0 to 19.1 ppbv in the afternoon on October 20 was due to plumes from burning of agricultural wastes such as rice straw and stubble. It is expected from the measurement data that the constructed dual-channel glass coil sampling system can be utilized for measuring atmospheric concentration of the formaldehyde with high time resolution.

Developing of Sound Absorption Composite Boards Using Carbonized Medium Density Fiberboard (탄화 중밀도섬유판을 이용한 목재흡음판 개발)

  • Lee, Min;Park, Sang-Bum;Byeon, Hee-Seop;Kim, Jong-In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.714-722
    • /
    • 2014
  • In the previous study, a variety of wood-based panels was thermally decomposed to manufacture carbonized boards that had been proved to be high abilities of insect and fungi repellence, corrosion and fire resistant, electronic shielding, and formaldehyde adsorption as well as sound absorption performance. Based on the previous study, carbonized medium density fiberboard (c-MDF) was chosen to improve sound absorption performance by holing and sanding process. Three different types of holes (cross shape, square shape, and line) with three different sanding thickness (1, 2, and 3 mm) were applied on c-MDF and then determined sound absorption coefficient (SAC). The control c-MDF without holes had 14% of SAC, however, those c-MDFs with holes had 16.01% (square shape), 15.68% (cross shape), and 14.25% (line) of SAC. Therefore, making holes on the c-MDF did not significantly affect on the SAC. As the degree of sanding increased, the SAC of c-MDF increased approximately 65% on sanding treated c-MDFs (21.5, 21.83, and 19.37%, respectively) compared to the control c-MDF (13%). Based on these results, composite sound absorbing panel was developed with c-MDF and MDF (11 mm). The noise reduction coefficient of composite sound absorbing panel was 0.45 which was high enough to certify as sound absorbing material.

Effects of High Hydrostatic Pressure and pH on the Reduction of Garlic Off-flavor (초고압처리 시간과 pH 변화에 의한 마늘의 이취성분 저감화)

  • Lim, Chae-Lan;Hong, Eun-Jeung;Noh, Bong-Soo;Choi, Won-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.533-540
    • /
    • 2010
  • Effects of pH (1.8-10.2) and time (56 sec-15 min 4 sec) at high hydrostatic pressure (500 MPa) on the reduction of volatile compounds in garlic were studied. Volatile components of garlic were obtained from the headspace, analyzed, and identified by gas chromatography (GC)-mass spectrometry and an electronic nose. Nineteen sulfur compounds were identified as major compounds in garlic, and furan, aldehydes, alcohols, and ketones were also detected. Off-flavor compounds were more effectively reduced under strong acidic conditions. As the residence time at 500 MPa increased from 56 sec to 15 min 4 sec, the total amount of volatile compounds decreased significantly. The total amount of sulfur compounds decreased about 70% compared to those of raw garlic when the garlic was soaked in buffer (pH 6.0) and treated at 500 MPa for 15 min 4 sec. A principal component analysis showed that the off-flavors of garlic were reduced by the operating time of high hydrostatic pressure as well as pH treatment. The correlation coefficient of the results between GC and the electronic nose analysis was 0.9620. Therefore, pH and high hydrostatic pressure treatment could be used as an efficient method for reducing of garlic off-flavor.

Immobilization of β-Glucosidase from Exiguobacterium sp. DAU5 on Chitosan Bead for Improved Enzymatic Properties (효소 특성 개선을 위한 Exiguobacterium sp. β-glucosidase의 키토산 비드에 효소 고정화)

  • Chang, Jie;Park, In-Hye;Lee, Yong-Seok;Chung, Soo-Yeol;Fang, Shu Jun;Chandra, M. Subhosh;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1589-1594
    • /
    • 2010
  • Glutaraldehyde was used to cross-link chitosan beads to immobilize the crude enzyme $\beta$-glucosidase from Exiguobacterium sp. DAU5. The conditions for preparing cross-linking chitosan beads and immobilization such as concentration of glutaradehyde, cross-linking time, immobilization pH and time were optimized. The chitosan beads were cross-linked with 1.5% glutaraldehyde for 1.5 hr. The immobilized $\beta$-glucosidase had an overall yield of 20% and specific activity of 5.22 U/g. The optimized pH and temperature were 9.0 and $55^{\circ}C$, respectively. More than 80% of its activity at pH 7.0-10.0, 80% at $40^{\circ}C$ for 2 hr and 48% at $50^{\circ}C$ for 1 hr, were retained. However, the immobilization product showed higher pH and thermal stabilities than free enzymes. It also showed high hydrolyzing activity on soybean isoflavone glycoside linkage. These results suggest the broad application prospects of immobilization enzymes.

Phosphatidic Acid Production by PLD Covalently Immobilized on Porous Membrane (공유결합으로 다공성 막에 고정화된 PLD에 의한 포스퍼티딕산 생산)

  • Park, Jin-Won
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.224-228
    • /
    • 2015
  • Phospholipase D (PLD) was immobilized on a submicro-porous membrane through covalent immobilization. The immobilization was conducted on the porous membrane surface with the treatment of polyethyleneimine, glutaraldehyde, and the anhydrase, in sequence. The immobilization was confirmed using X-ray photon spectrometer. The pH values of phosphatidylcholine (PC) dispersion solution with buffer were monitored with respect to time to calculate the catalytic activities of PC for free and immobilized PLD. The catalytic rate constant values for free PLD, immobilized PLD on polystyrene nanoparticles, and immobilized PLD on a porous cellulose acetate membrane were 0.75, 0.64, and 0.52 s-1, respectively. Reusability was studied up to 10 cycles of PC hydrolysis. The activity for the PLD immobilized on the membrane was kept to 95% after 10 cycles, and comparable to the PLD on the nanoparticles. The stabilities for heat and storage were also investigated for the three cases. The results suggested that the PLD immobilized on the membrane had the least loss rate of the activity compared to the others. From these studies, the porous membrane was feasible as a carrier for the PLD immobilization in the production of phosphatidic acid.

Removal of Off-flavor from Laminaria Japonica by Treatment Process of Supercritical Carbon Dioxide (초임계 이산화탄소 처리 공정에 의한 다시마 유래 이취성분 제거)

  • Park, Jung-Nam;Kim, Ryoung-Hee;Woo, Hee-Chul;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.191-199
    • /
    • 2012
  • In order to reduce or remove off-flavor and volatile organic compounds (VOCs) from Laminaria japonica effectively, continuous treatment process by supercritical carbon dioxide (SC-$CO_2$) was applied. After freeze-drying, Laminaria japonica powdered with $710{\mu}m$ was used. Experiments were carried out at temperature range from 35 to $55^{\circ}C$, and pressure range from 10 to 25 MPa for evaluation of SC-$CO_2$ treatment effect. Flow rate of carbon dioxide used in this reseach was constantly fixed at 26.81 g/min. Before and after treatment of SC-$CO_2$, off-flavor and VOCs from Laminaria japonica were analyzed by gas chromatography-mass spectrometry detector (GC-MSD). Total 47 VOCs emitted from Laminaria japonica were identified before treatment of SC-$CO_2$, major components of seaweed smell (ordor) in Laminaria japonica were identified as alcohols, aldehydes, ester and acids, ketone, halogenated compounds and hydrocarbon. Off-flavor and VOCs in all experimental conditions was reduced or removed after SC-$CO_2$ treatment. Among the experimental conditions, the highest removal yield was at 25 MPa and $55^{\circ}C$.

Assessment of Exposure to and Risk of Formaldehyde and Particulate Matter (PM10 and PM2.5) by Time Activity Applying Real-Time Indoor and Outdoor Monitoring (실내·외 실시간 모니터링을 활용한 폼알데하이드 및 미세먼지(PM10, PM2.5)의 거주시간별 노출 및 위해도 평가)

  • Yoon, Danki;Namgoung, Sunju;Kong, Hyekwan;Hong, Hyungjin;Lim, Huibeen;Park, Sihyun;Lee, Hyewon;Lee, Jungsub;Lee, Cheolmin
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.6
    • /
    • pp.646-657
    • /
    • 2019
  • Objectives: The purpose of this study was to suggest methods to investigate continuous monitoring of concentration levels and assess the exposure of individuals considering the actual time activity of residents for formaldehyde and particulate matter (PM10, PM2.5) in the indoor and outdoor air of a house, assess the health risks of children and adults based on the results of the exposure assessment, and provide basic data on studies for assessing exposure and health risks in Korea in the future. Methods: The concentration levels of formaldehyde and particulate matter were measured in a family home in Gyeonggi-do Province from April 25 to July 31, 2019, using electrochemical sensors (formaldehyde) and light scattering sensors (PM10, PM2.5). Risk assessment by the duration of exposure by time activity was performed by dividing between weekdays and weekends, and indoors and outdoors. Results: The greatest level of carcinogenic risk from inhaling formaldehyde was indoors during the weekdays for both children and adults. For children, the risk was at 7.5 per approximately 10,000 people, and for adults, the risk was at 4.1 per approximately 10,000 people. PM10 and PM2.5 also showed the greatest values indoors during the weekdays, with children at 1.7 people and 1.4 per approximately 100 people, respectively, and adults at 8.2 per approximately 1,000 and 1.8 per approximately 100 people, respectively. Conclusions: The risks of formaldehyde, PM10 and PM2.5 were shown to be high indoors. Therefore, consideration of exposure assesment for each indoor pollutant and management of indoor air quality is necessary.

Changes in Amines, Formaldehydes and Fat Distribution during Gulbi Processing (굴비 제조중 아민류, 포름알데하이드 및 지방분포의 변화)

  • Min, Ok-Rae;Shin, Mal-Shick;Jhon, Deok-Young;Hong, Youn-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.125-132
    • /
    • 1988
  • Gulbis were made of raw Pseudosciaena manchurica by different salting methods and drying conditions. During the Gulbi processing, the contents of trimethylamine(TMA), dimethylamine(DMA) and formaldehyde(FA) were chemically analyzed and the distribution of fat was microscopically observed. The contents of TMA, DMA and FA in raw sample were 0.9mg, 3.19mg and 0.19mg per 100g, respectively. The TMA contents in Gulbi were rapidly increased to 24.82-76.32mg during drying, while the DMA contents in Gulbi were slowly increased and FA contents in Gulbi remained nearly unchanged. These changes were not influenced by the kinds of salt and salting methods. The formation rates of TMA and DMA were twice faster dried by the controlled condition than the natural condition. The fat in muscle moved to the skin layer through connective tissue with the laps of drying time. The extent of fat shifting was smaller salted by purified salt than by bay salt. The muscle tissue of Gulbi dried by the controlled condition had clearer spaces between white muscles than that of the natural condition. The muscle tissue of Gulbi salted with purified salt exsisted orderly, while the sample salted with bay salt was clumped.

  • PDF

Health Risk Assessment for Residents after Exposure to Chemical Accidents: Formaldehyde (화학사고물질 노출에 따른 피해지역 주민 건강위해성평가: 폼알데하이드 사례를 중심으로)

  • Park, Sihyun;Cho, Yong-Sung;Lim, Huibeen;Park, Jihoon;Lee, Cheolmin;Hwang, Seung-Ryul;Lee, Chungsoo
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.2
    • /
    • pp.155-165
    • /
    • 2021
  • Objectives: Acute exposure to high concentrations of chemicals can occur when a chemical accident takes place. As such exposure can cause ongoing environmental pollution, such as in the soil and groundwater, there is a need for a tool that can assess health effects in the long term. The purpose of this study was assessing the health risks of residents living near a chemical accident site due to long-term exposure while considering the temporal concentration changes of the toxic chemicals leaked during the accident until their extinction in the environment using a multimedia environmental dynamics model. Methods: A health risk assessment was conducted on three cases of formaldehyde chemical accidents. In this study, health risk assessment was performed using a multimedia environmental dynamics model that considers the behavior of the atmosphere, soil, and water. In addition, the extinction period of formaldehyde in the environment was regarded as extinction in the environment when the concentration in the air and soil fell below the background concentration prior to the accident. The subjects of health risk assessment were classified into four groups according to age: 0-9 years old, 10-18 years old, 19-64 years old, and over 65 years old. Carcinogenic risk assessment by respiratory exposure and non-carcinogenic risk assessment by soil intake were conducted as well. Results: In the assessment of carcinogenic risk due to respiratory exposure, the excess carcinogenic risk did not exceed 1.0×10-6 in all three chemical accidents, so there was no health effect due to the formaldehyde chemical accident. As a result of the evaluation of non-carcinogenic risk due to soil intake, none of the three chemical accidents had a risk index of 1, so there was no health effect. For all three chemical accidents, the excess cancer risk and hazard index were the highest in the age group 0-9. Next, 10-18 years old, 65 years old or older, and 19-64 years old showed the highest risk. Conclusion: This study considers environmental changes after a chemical accident occurs and until the substance disappears from the environment. It also conducts a health risk assessment by reflecting the characteristics of the long-term persistence and concentration change over time. It is thought that it is of significance as a health risk assessment study reflecting the exposure characteristics of the accident substance for an actual chemical accident.