• Title/Summary/Keyword: 안정 유동 영역

Search Result 96, Processing Time 0.023 seconds

DTERMINATION OF STBLE-UNSTABLE REGIONS OF THE SLOSH MOTION IN SPINNING SPACE VEHICLE BY PERTURBATION TECHNIQUE (PERTURBATION 방법을 이용한 회전안정화 우주비행체 내부 유동의 안정-불안정 영역 결정)

  • Kang, Ja-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.513-526
    • /
    • 2005
  • The objectives of this study are to perform extensive analysis on internal mass motion for a wider parameter space and to provide suitable design criteria for a broader applicability for the class of spinning space vehicles. In order to examine the stability criterion determined by a perturbation method, some numerical simulations will be performed and compared at various parameter points. In this paper, Ince-Strutt diagram for determination of stable-unstable regions of the internal mass motion of the spinning thrusting space vehicle in terms of design parameters will be obtained by an analytical method. Also, phase trajectories of the motion will be obtained for various parameter values and their characteristics are compared.

Supersonic Intake Design & Flow Control Analysis using Bleeding Condition (초음속 흡입구 형상 설계 및 Bleeding을 활용한 유동제어 연구)

  • Choe, Jae-Hwan;Cheon, So-Min;Kim, Jong-Am
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.77-80
    • /
    • 2012
  • 초음속 흡입구는 설계점에서 안정적으로 작동하지만 설계점 밖에서는 엔진성능이 급격히 감소하거나 층 격파 불안정 문제가 발생할 수 있다. 초음속 흡입구의 일반적인 특성을 파악하기 위해 2단 꺾임각을 갖는 외부 압축식 2차원 흡입구를 설계하고 EDISON_열유체 시스템을 이용하여 최종적으로 설계 마하수 2.5에서 작동하는 형상을 얻었다. 그러나 설계 마하수 이하의 영역에서는 충격파-경계층, 충격파간 상호작용으로 인해 유동에서 박리가 발생하고 최종적으로 흡입구 목을 질식시켜 아임계 상태로 천이된다. 이를 해결하기 위해 유동 제어 방법 중 하나인 bleeding을 이용하여 경계층을 제거하거나 유동의 박리를 방지하여 충격파를 cowl lip 전방에 안정하게 고정시킬 수 있었으며, 결과적으로 목적하였던 마하수 2.0에서 2.5에 이르는 작동 영역에서 강건하게 운용될 수 있는 초음속 흡입구를 설계하였다.

  • PDF

DETERMINATION OF GLOBAL STABILITY OF THE SLOSH MOTION IN A SPACECRAFT VIA NUMERICAL EXPERIMENT (수치적 실험에 의한 위성 내부 유동체의 안정-불안정 영역 판별)

  • 강자영
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.351-358
    • /
    • 2003
  • The global stability of the attitude motion of a spin-stabilized space vehicle is investigated by performing numerical experiment. In the previous study, a stationary solution and a particular resonant condition for a given model were found by using analytical method but failed to represent the system stability over parameter values near and off the stationary points. Accordingly, as an extension of the previous work, this study performs numerical experiment to investigate the stability of the system across the parameter space and determines stable and unstable regions of the design parameters of the system.

Effective Simulation Technology for Near Shore Current Flow (연안해수유동에 관한 효율적인 수치계산기법)

  • Yoon, B.S.;Rho, J.H.;Fujino, M.;Hamada, T.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.38-47
    • /
    • 1995
  • The three-dimensional multi-layer computer simulation technology for tidal current developed in the previous study is updated to a new version. many improvements are achieved by following changes : (1) No-reflection condition is adopted instead of no-gradient condition as an open boundary condition. (2) Time marching algorithm is changed so that velocity and pressure(surface movement) might be salved in turn at different time step (3) Convection term in equation of motion is estimated by upwind differencing scheme instead of central differencing. The stability is improved considerably and the steady state is achieved within 2 tidal periods which is about 3 times shorter than that of the old version. Moreover, fluctuations in time disappeared by introducing the new time marching technique. An application to the real near shore area(near Inchon harbor) is performed by the new version. Simulated results are compared with those by the simulation total developed in the University of Tokyo. Validity and effectiveness of the two simulation technologies are chocked through the comparative research works.

  • PDF

Examples of One-Dimensional Dissipative Instabilities in Simple Shear Flow as Predicted by Differential Constitutive Equations (단순전단유동에서 미분 구성방정식의 일차원적 불안정거동예)

  • 권영돈
    • The Korean Journal of Rheology
    • /
    • v.7 no.3
    • /
    • pp.192-202
    • /
    • 1995
  • 이연구에서는 유변학 구성방정식이 나타내는 일차원 불안정성의 몇가지 예를 보였 다. 안정성 해석을 위하여 맥스웰형 미분구성방정식 Giesekus, Leonov, Larson 모델을 선택 하였다. 나타난 불안정성은 단순전단유동에서의 정상유동곡석이 무제한적 단수증가성을 위 배할 때 발생한다. 단순전단유동에 부과된 섭동하에서 Giesekus와 Larson 모델이 일정영역 의 무델계수와 전단율속도값에서 불안정 거동은 관성력을 고려하지 않은 경우에도 발생함이 증명되었다. 끝으로 이러한 불안정 거동을 개선하는 몇가지 방법을 Leonv와 Giesekus 모델 에 대하여 제시하였다.

  • PDF

600MW(e) CANDU PHTS Flow Instability and Interconnect Effect

  • Won Jae Lee;Jin Soo Kim;Goon Cherl Park
    • Nuclear Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.290-301
    • /
    • 1985
  • 600MW(e) CANDU Primary Heat Transport System (PHTS) is composed of the two “figure-of-eight” loops and is designed to operate with the 4% Reactor Outlet Header (ROH) quality at its rated power. This existence of the two compressible regions and the positive flow-qualitly-void feedbacks are the sources of the PHTS flow instability. To ensure the PHTS stability, ROH-ROH interconnect pipes are installed as passive systems. This paper describes the investigation of the PHTS flow instability at its design full power condition. Also studied are the interconnect effect and the inherent system damping effect on the system stability. The time domain stability analyses are accessed by using the ATHER/MOD-I code which is the improved version of the KAERI developed ATHER code. Under the most adverse system modelling, the “figure-of-eight” symmetric loop shows divergent flow oscillations. Under with the interconnect, the PHTS stability is remarkably enhanced so that the system becomes stable. However, even under the conservative pressurizer modelling, the PHTS shows the more convergent flow oscillations. With the interconnect and the pressurizer modelling, its stability is highly credited. Conclusively, the inherent system damping by pressurizer itself can credit the PHTS stability without the interconnect.

  • PDF

스포일러가 장착된 BWB형상 UCAV의 이차원 유동해석

  • Go, A-Rim;Jeong, Yu-Ri;Sin, Dong-Min
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.554-559
    • /
    • 2016
  • 본 논문은 EDISON CFD를 사용하여 스포일러가 장착된 무미익 BWB UCAV에 대하여 이차원 유동해석을 수행하였다. 무미익 형상은 일반적인 항공기보다 롤과 요 방향의 안정성과 조성성에 있어 불리한 특징을 갖는데 특히 이 착륙 시 고 받음각의 영역에서 발생하는 Pitch-up 현상이 항공기 안정성에 문제를 야기한다. 수직 미익 부재와 pitch-up 현상으로 인한 BWB형상의 UCAV가 지니는 단점을 보완하기 위해서 스포일러가 장착된 형상이 적용되기도 한다 본 연구에서는 윗면과 아랫면에 스포일러가 장착된 경우에 대해 전산유동해석을 수행하였다. 해석결과 윗면의 스포일러는 양력의 감소와 항력의 증가를 야기했으며, 아랫면의 스포일러는 양력과 항력을 모두 증가시켰다. 피칭모멘트의 경우 아랫면의 스포일러가 저받음각에서 안정성을 증가시켰다.

  • PDF

A Particle Tracking Method for the Lagrangian-Eulerian Finite Element Method in 3-D Subsurface System (3차원 지표하 시스템에서 Lagrangian-Eulerian 유한요소법에 대한 입자추적 알고리즘)

  • Lee, Jae-Young;Kang, Mee-A
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.205-215
    • /
    • 2009
  • The conventional numerical models to analyze flow in subsurface porous media under the transient state usually generate numerical oscillation and unstability due to local flux domain for critical cases such as infiltration into initially dry soil during rainfall period. In this case, it is required refined mesh and small time step, but it decrease efficiency of computation. In this study, numerical unstability in discontinuity domain is removed by applying particle tracking algorithm to simulate unsteady subsurface flow with inflow boundary condition. Finally the hybrid LE FEM improving numerical stability is proposed. The hypothetical domains with unsteady uniform and nonuniform flow field were used to demonstrated algorithm verification. In comparison with analytic solution, we obtained reasonable results and conducted simulation of hypothetical 3-D recharge/pumping area. The proposed algorithm can simulate saturated/unsaturated porous media with more practical problems and will greatly contribute to accuracy and stability of numerical computation.

Study on the Stability Test of Impinging(FOOF) Injector on $GN_2$ Purge Cold Flow Test (질소분사 음향시험을 통한 충돌형(FOOF) 분사기의 안정성 평가에 관한 연구)

  • Yoo Doc-Koon;Lee Kwang-Jin;Seo Seong-Hyeon;Han Young-Min;Choi Hwan-Seok;Seol Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.135-140
    • /
    • 2006
  • In the experimental study of $N_2$ purge cold flow test of impinging(FOOF) injector for determining of instability region, the whistling sound which has a specific frequency is generated. The frequency of whistling is proportional to the gas flow velocity in part of the oxidizer orifice and due to the coupling of the vibrating gas column and the natural frequency of pipe-orifice shape, the discontinuous jumping phenomena arises. The whistling phenomena have no effect on the combustion instability. Compared the damping factor of 1T1L mode with the hot fire test, the instability region of $N_2$ purge cold flow test is very much like that. It means that flow instability by impinging or mixing of jet is the main reason of combustion instability of impinging injector(FOOF) in the hot firing test.

  • PDF

A Closed Counter-Current Two-Phase Thermosyphon Loop of a Cold Neutron Source in HANARO Research Reactor (하나로 원자로에 설치될 대향 이상 열사이펀 루프에 관한 실험)

  • Hwang, Kwon-Sang;Cho, Man-Soon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1038-1045
    • /
    • 2000
  • An experimental study was carried out to delineate the flow characteristics in a closed countescurrent two-phase thermo syphon with concentric tubes. This is to be installed in the HANARO research reactor as a part of a Cold Neutron Source(CNS). In the present investigation, experiments ata room temperature with Freon-II3 as a moderator were performed. Results show that, based on the magnitude of pressure fluctuation, the flow regimes could be divided into 4 distinct ones in the ($V_f,\;Q_i$) plane, where $V_f$ represents the volume of the charged liquid and $Q_i$ the heat load: a stable flow regime, an oscillatory flow regime, a restablized flow regime and a dryout flow regime. For $V_f$>2.5l, the flow is stable at low $Q_i$. However, as $Q_i$ increases, the flow becomes oscillatory and finally restablizes As $V_f$ increases, the oscillation amplitude decreases, reaching to the restablized flow region at low $Q_i$, and the liquid level in the moderator cell remains high. In the oscillatory flow regimes, for a fixed VI; the oscillating period of time varies with $Q_i$, having a minimum value at a certain value of $Q_i$. The heat load, where the oscillating period of time is minimum, decreases as $V_f$ increases.