• Title/Summary/Keyword: 안전사고의 원인

Search Result 1,375, Processing Time 0.042 seconds

A basic study on explosion pressure of hydrogen tank for hydrogen fueled vehicles in road tunnels (도로터널에서 수소 연료차 수소탱크 폭발시 폭발압력에 대한 기초적 연구)

  • Ryu, Ji-Oh;Ahn, Sang-Ho;Lee, Hu-Yeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.517-534
    • /
    • 2021
  • Hydrogen fuel is emerging as an new energy source to replace fossil fuels in that it can solve environmental pollution problems and reduce energy imbalance and cost. Since hydrogen is eco-friendly but highly explosive, there is a high concern about fire and explosion accidents of hydrogen fueled vehicles. In particular, in semi-enclosed spaces such as tunnels, the risk is predicted to increase. Therefore, this study was conducted on the applicability of the equivalent TNT model and the numerical analysis method to evaluate the hydrogen explosion pressure in the tunnel. In comparison and review of the explosion pressure of 6 equivalent TNT models and Weyandt's experimental results, the Henrych equation was found to be the closest with a deviation of 13.6%. As a result of examining the effect of hydrogen tank capacity (52, 72, 156 L) and tunnel cross-section (40.5, 54, 72, 95 m2) on the explosion pressure using numerical analysis, the explosion pressure wave in the tunnel initially it propagates in a hemispherical shape as in open space. Furthermore, when it passes the certain distance it is transformed a plane wave and propagates at a very gradual decay rate. The Henrych equation agrees well with the numerical analysis results in the section where the explosion pressure is rapidly decreasing, but it is significantly underestimated after the explosion pressure wave is transformed into a plane wave. In case of same hydrogen tank capacity, an explosion pressure decreases as the tunnel cross-sectional area increases, and in case of the same cross-sectional area, the explosion pressure increases by about 2.5 times if the hydrogen tank capacity increases from 52 L to 156 L. As a result of the evaluation of the limiting distance affecting the human body, when a 52 L hydrogen tank explodes, the limiting distance to death was estimated to be about 3 m, and the limiting distance to serious injury was estimated to be 28.5~35.8 m.

Effect of Medium, Soil, and Irrigation Water Contaminated with Escherichia coli and Bacillus cereus on the Microbiological Safety of Lettuce (Escherichia coli 와 Bacillus cereus에 오염된 상토, 토양 및 관개용수가 상추의 미생물 안전에 미치는 영향)

  • Kim, Se-Ri;Lee, Seo-Hyun;Kim, Won-Il;Kim, Byung-Seok;Kim, Jun-Hwan;Chung, Duck-Hwa;Yun, Jong-Chul;Ryu, Kyoung-Yul
    • Horticultural Science & Technology
    • /
    • v.30 no.4
    • /
    • pp.442-448
    • /
    • 2012
  • Many outbreaks of food-borne illnesses have been associated with the consumption of fresh vegetables and fruits contaminated with food-borne pathogens. Contaminated medium, manure and irrigation water are probable vehicles for the pathogen in many outbreaks. The aim of this study was to determine the potential transfer of Escherichia coli and Bacillus cereus from medium and soil fertilized with contaminated compost or irrigation with contaminated water to the edible parts of lettuce. Moreover, survivals of the two pathogens on lettuce contaminated medium, soil and irrigation water were estimated. Lettuce seeds were planted in medium contaminated with 7.5 log colony forming unit (CFU)/g of E. coli and B. cereus. Seedlings grown in the contaminated medium were transplanted in soil fertilized with contaminated pig manure compost or uncontaminated soil. Contaminated irrigation water with E. coli and B. cereus at 8.0 log CFU/mL was applied only once on the plant by sprinkle irrigation and surface irrigation. Although E. coli and B. cereus in medium and sprouted lettuce after planting seeds were reduced as time passed, these pathogens survived in seedling raising stage for extended periods. The numbers of E. coli and B. cereus in lettuce grown on contaminated soil were detected over 4.0 log CFU/g for 21 days. The numbers of E. coli and B. cereus in lettuce applied by sprinkle irrigation were higher than those of surface irrigation by 5.0 log CFU/g. Our results indicated that contaminated medium, soil and irrigation water can play an important role in the presence of food-borne pathogens on vegetables.

A Survey on the Recognition of Confectionery Bakers Working in Gyeongnam Province for Food Allergy (식품알레르기에 대한 경남지역 제과제빵 종사자들의 인식도 조사)

  • Kim, Sol-A;Lee, Jeong-Eun;Cho, Sung-Rae;Chang, Ji-Yoon;Shim, Won-Bo
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.5
    • /
    • pp.330-338
    • /
    • 2018
  • The aims of this study were to investigate the perception of confectionery bakers working in Gyeongnam province for food allergy and to find ways to improve and manage food allergy in confectionery and bakery. The questionnaire was composed of general questions and other questions related to food allergy in confectionery and bakery, and the questionnaires were distributed to the bakers working in Gyeongnam. Sixty nine of 102 confectioneries and bakeries responded to this study, and 60 (87.0%) out of 69 people were aware or had heard about food allergy. However, 54 (78.3%) out of 69 lacked prior education about the management of food allergy. Fifty one (73.9) of 69 people responded that they strongly considered food allergy in the manufacture of the products, but they were not educated about the management of food allergens and symptoms of food allergy. Confectionery bakers were aware about food allergies, but did not label food allergen on the products and have a specific management for food allergens at the work site. Therefore, it is necessary to educate the confectionery bakers about food allergy and to develop and distribute a manage program of food allergens in the field. The result from the present study could be used as basic data for the investigation of awareness for food allergy of confectionery bakers working in Korea.

A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer (변압기의 화재확산 방지를 위한 부싱 방화구조체 적용에 관한 연구)

  • Kim, Do-Hyun;Cho, Nam-Wook;Yoon, Choung-Ho;Park, Pil-Yong;Park, Keun-Sung
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.53-62
    • /
    • 2017
  • Electric power which is the energy source of economy and industries requires long distance transportation due to regional difference between its production and consumption, and it is supplied through the multi-loop transmission and distribution system. Prior to its actual use, electric power flows through several transformations by voltage transformers in substations depending on the characteristics of each usage, and a transformer has the structure consisting of the main body, winding wire, insulating oil and bushings. A transformer fire that breaks out in substations entails the primary damage that interrupts the power supply to houses and commercial facilities and causes various safety accidents as well as the secondary economic losses. It is considered that causes of such fire include the leak of insulating oil resulting from the destruction of bottom part of bushings, and the chain reaction of fire due to insulating oil that reaches its ignition point within 1 second. The smoke detector and automatic fire extinguishing system are established in order to minimize fire damage, but a difficulty in securing golden time for extinguishing fire due to delay in the operation of detector and release of gas from the extinguishing system has become a problem. Accordingly, this study was carried out according to needs of active mechanism to prevent the spread of fire and block the leak of insulating oil, in accordance with the importance of securing golden time in extinguishing a fire in its early stage. A bushings fireproof structure was developed by applying the high temperature shape retention materials, which are expanded by flame, and mechanical flame cutoff devices. The bushings fireproof structure was installed on the transformer model produced by applying the actual standards of bushings and flange, and the full scale fire test was carried out. It was confirmed that the bushings fireproof structure operated at accurate position and height within 3 seconds from the flame initiation. It is considered that it could block the spread of flame effectively in the event of actual transformer fire.

Video-assisted Thoracoscopic Surgery in Posttraumatic Localized Clotted Hemothorax (외상 후 국소적으로 응고된 혈흉의 비디오흉강경수술)

  • 이정희;김정중;이석기;임진수;최형호
    • Journal of Chest Surgery
    • /
    • v.37 no.12
    • /
    • pp.987-991
    • /
    • 2004
  • Background: Inadequate drainage of traumatic hemothoraces may result in prolonged hospitalization and complication such as empyema, fibrothorax and pleural calcification. This needs to be the placement of a tube thorascostomy which is efficacious in more than 80% of cases. Other cases require surgical treatment. Material and Method: From March 2002 to February 2003, there were 123 patients who was done closed thorascostomy in traumatic hemothorax. 10 patients (group I) were undergone early retained clot evacuation with video assisted thoracoscopic surgery, but 5 patients (group II) who developed a localized hematoma or empyema were operated. Male were more than female and mean average was similar in both group. The most common cause of injury was traffic accidents and frequently combined lesions were a abdomen. Result: Interval from injury and operation, mean operation time, duration of tube drainage and hospital stay in group I were shorter than group II (p<0.05). Operation-related complication and recurrence of fluid collection within follow up period (17.8$\pm$3.8 months) in group I were none, but in group II (21.5$\pm$5.3 months) were 2 cases. Conclusion: Video assisted thoracoscopic surgery can be utilized as an effective and safe method for the removal of retained clotted hemothorax within 7 days.

A Study on the Development and the Verification Experiment of ECDA Equipment (외면부식직접평가 장비 개발 및 실증 시험에 관한 연구)

  • Ryou, Young-Don;Lee, Jin-Han;Jung, Sung-Won;Park, Kyeong-Wan
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.72-81
    • /
    • 2016
  • When the coatings of buried steel pipelines are damaged, corrosion could be occurred on the surface of the damaged areas. Moreover the pinhole occurred by corrosion of pipelines may cause accidents due to gas leakage. To prevent these accidents, foreign countries including UK and USA have carried out coating defect detection on the buried gas pipelines by using a DCVG or a ACVG and have conducted direct assessment of pipelines through digging the ground, and if necessary, have repaired the pipelines. That is called ECDA i.e External Corrosion Direct Assessment which is regulated by NACE standards(SP 0502) and etc. In Korea, the ECDA provisions were included in KGS FS551 in 2014 when the regulations of Safety Validation in Detail for the medium-pressure piping were introduced. We have developed the equipment which can be used to detect external corrosion of the buried gas pipelines. We have also constructed pipeline test bed for empirical test of the developed equipment. In addition, we have carried out the verification experiments of the developed equipment on the test bed to demonstrate the performance of the equipment. The experiments were conducted by comparison tests of the developed equipment and other equipments which have been introduced and used in Korea. As the result, we have found the developed equipment is easier to use and has far superior performance compared to other equipment being used in Korea.

Acutrak Screw Fixation for Radial Head Fracture -7 Cases Report- (Acutrak 나사를 이용한 요골두 골절의 치료 -7례 보고-)

  • Kim, Kwang-Yul;Lim, Moon-Sup;Shin, Heung-Sub;Choi, Shin-Kwon
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.5 no.1
    • /
    • pp.75-80
    • /
    • 2006
  • Purpose: To evaluate the efficiency of Acutrak screw fixation for radial head fracture (Mason type 2) without considering the safe Bone of radial head. Materials and Methods: Consecutive seven radial head fracture of Mason type II underwent internal fixation with Acutrak screws from May 2001 to February 2003. The mean follow-up period was 1.2years (ranged, $6 months{\sim}2.5 years$). The mean age of patients was 47 years old (ranged, $36{\sim}60years$ old). The cause of injury were fall down -4 cases and traffic accident -3 cases. The results were evaluated by Mayo Clinic results scoring system. Results: Functional Rating Index of Mayo Clinic was excellent- 2 cases and good- 5 cases. There were no nonunion, loosening, heterotopic ossification, infection or degenerative changes. The postoperative range of motion in elbow joint is nearly full for flexion, extension, pronation and supination in this study Conclusion: Consideration of safe zone is not necessary when Acutrak screws are used for radial head fracture. It seems to be a useful method that Acutrak screw fixation for radial head fracture (Mason type II) could achieve good radiologic and clinical results without influencing proximal radio-ulnar joint and has powerful fixation.

  • PDF

Uncertainty Assessment of CANDU Void Reactivity using MCNP-4C with ENDF/B-VII(I) (ENDF/B-VII기반 MCNP-4C를 이용한 CANDU-6 기포반응도 불확실성 평가(I))

  • Hong, S.T.;Kwon, T.A.;Lee, Y.J.;Oh, S.K.;Lee, S.K.;Kim, M.W.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2008.04a
    • /
    • pp.69-75
    • /
    • 2008
  • 기포반응도는 월성발전소를 비롯한 CANDU형 원자로의 주된 안전성 쟁점사안으로 끊임없이 논의되어 왔다. 이는 설계기준사고가 노심에서 열에너지 불균형이 원인이 되어 기준이상의 핵연료 파손과 방사성물질 누출로 발전할 위험이 있는 사건들로 정의될 때, 사건 진행 과정에 기포반응도 증가는 조기에 운전중단을 실패할 경우 출력폭주로 이어지므로 사건의 결말이 중대사고로 전환될 위험이 크기 때문이다. 본 연구는 공개된 최신 핵자료인 ENDF/B-VII.0를 NJOY.99로 처리한 연속에너지 반응단면적 라이브러리를 구축하고 MCNP-4C에 접속하여 37봉 천연우라늄 핵연료다발의 표준노심격자에 대한 기포반응도를 시뮬레이션하여, 지금까지 각종문헌에 제시된 값들과 비교, 종합하므로 내제된 불확실성을 추정하는 내용이다. ENDF/B-VII.0 기반 MCNP-4C의 CANDU 노심격자 모델은 동일한 핵자료와 핵종농도를 사용한 WIMS-IAEA 모델과 비교할 때, 초기 노심의 임계도 오차 약 3.51mk가 연소 진행에 따라 $7.5\times10^{-4}mk$/MWD/teU의 비율로 감소하는 것으로 나타났다. 또한 MCNP-4C 예측기포반응도는 초기노심에서 기포율 50% 및 100%에 대해 각각 8.38 및 15.96mk, 평형노심에서 7.68 및 14.72mk로 계산된다. 이는 월성 2, 3, 4 FSAR의 초기노심 및 평형노심에서 100% 기포상태에 대한 값, 약15.0 및 10.6mk와 비교할 때, 초기노심은 약 1.0mk 평형노심은 약4, 1mk 보수적이지만, 다른 연구결과들과는 최대오차 ${\pm}1{\sim}2mk$ 이내에서 잘 일치하는 것으로 평가되었다. 본 연구는 CANDU 노심의 기포반응도 불확실성 요인의 규명 및 영향평가를 위한 노력의 일부로서 앞으로 감속재의 붕산농도 변화, 감속재 및 냉각재의 중수 순도 변화, 기기노화에 의한 격자 구조 및 물성 변화, 중성자속 및 출력 분포 불균형, 반응도조절장치의 위치, 등 주요 설계변수의 변화에 대한 반응도영향 분석연구를 계속할 계획이다.

  • PDF

A Study on the Improvement of Operation Performance of Wet Bell Diving System in the Salvage Ship (고장 사례 분석을 통한 수중함용 디젤엔진 건전성에 관한 연구)

  • Choi, Woo-Suk;Min, Tae-Kyu;Kim, Byeong-Ho;Chang, Ho-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.98-106
    • /
    • 2020
  • This study examined the integrity of diesel engines for underwater vessels through failure analysis, analyzed the causes of abnormal diesel engine stoppage during building and examined the integrity of secondary damages. The diesel engine stoppage was analyzed by checking the temperature change of the piston before and after the abnormality and checking the damage. In addition, in order to analyze the secondary damage caused by the explosion, the tensile and compressive stresses transmitted to the crankshaft, the core part of the diesel engine, were calculated, and the stress distribution was examined through finite element analysis, but the crankshaft was designed by safety. It was confirmed that there was no damage to the crankcase even when the diesel engine was taken out of the ship and closely inspected. The integrity of the crank shaft was verified in advance for the occurrence of diesel engine emergency shutdown accidents through this research result. Therefore, the inspection and restoration were carried out to the minimum extent, and the quality of diesel engines was secured. This study is expected to be used as a reference for ensuring soundness in any future review of diesel engine quality problems.

Comparison of Load Ratio of Load-cell type Anemometer with Windswept Shape Variation (수풍부 형상에 따른 로드 셀형 풍향풍속계의 하중 비 비교)

  • Kim, Tae-Hyeong;Han, Dong-Seop
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.839-844
    • /
    • 2012
  • Anemometer is a meteorological instrument that measures wind direction and wind speed in real time, and is mounted to the cranes that are used at ports, shipbuilding yards, off-shore structure, or construction sites that are influenced by wind, and it is used in conjunction with the safety system. Load cell-type anemometer measures the wind direction through the ratio of load between 4 positions by mounting the thin plate to 4 load cells, and measures wind velocity through the summation of loads. According to previous research, the load ratio between two adjacent windswept with respect to the wind direction has unstable value due to vortex around windswept. This causes the result that increases an error on the wind direction. In this study we compared and analyzed the difference between the load ratio with respect to three type windswept shapes in order to suggest the proper windswept shape to reduce this error. The computational fluid flow analysis is carried out with ANSYS CFX to analyze the load ratio between three windswept shapes. Wind direction was adopted as the design variable, and selected 9 wind direction conditions from $0^{\circ}{\sim}90^{\circ}$ with $11.25^{\circ}$ interval for computational fluid flow analysis.