• Title/Summary/Keyword: 안전계수(safety factor)

Search Result 357, Processing Time 0.026 seconds

Reaction Characteristics of Phytoplankton Before and After the Yellow Dust Event in Taean Peninsula and Yellow Dust Impact Assessment (태안반도주변에서 춘계 황사 전·후 식물플랑크톤 반응특성과 황사분진 영향평가)

  • Yoo, Man Ho;Youn, Seok Hyun;Oh, Hyun Ju;Choi, Joong Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.898-906
    • /
    • 2018
  • To investigate the effect of yellow dust on phytoplankton, a field survey and physiological experiments were carried out in the waters near Taean Peninsula from April 22 to 26, 2006, when yellow dust occurred. Phytoplankton populations during the yellow dust period were in the range of $26{\sim}290{\times}10^3cells{\cdot}L^{-1}$, a somewhat low standing crop. An increase in diatoms (a main taxonomic group), especially benthic diatoms such as Paralia sulcate, a typical species for active mixed sea water areas, was also remarkable. In addition, the Chl-a concentration after yellow dust exceeded the Chl-a concentration change range according to the tide before yellow dust. As the concentration of yellow sand increased in a yellow sand treatment experiment, primary productivity decreased, and the maximum assimilation number showed the same tendency. In the 48h culture experiment, primary productivity of the test group was lower than that of the control group at the early stage (T0) of yellow sand treatment, but after 48 hours (T48), the test group showed higher primary productivity than the control group. In particular, the primary productivity of the test group significantly increased to 321 % after 48 hours. Therefore, strong physical environment accompanied by yellow dust may temporarily inhibit the growth of phytoplankton in the waters adjacent to China in the early stage of yellow dust, but the formation of stable water mass has also been identified as a potential factor promoting the growth of phytoplankton.

A Study on the Actual Measurement of Air Pollutants from a Diesel Engine of Ship (선박 디젤 엔진에서 발생하는 대기오염물질 실측에 관한 연구)

  • Park, Jinkyu;Lim, Seunghun;Oh, Jungmo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1063-1069
    • /
    • 2022
  • According to domestic air pollutant emission statistics, a considerable amount of air pollutants is generated by ships. Therefore, various policies are being implemented to limit air pollutant emissions from ships and improve the air quality in ports. In addition, international conventions are carried out for the prevention of marine pollution by ships. However, because few studies and experiments have been conducted on the measurement of air pollutants emitted from actually operating ships, this study presented a method and possibility for evaluating air pollutant emissions from a 9,196GT ship actually operating using a portable emission measurement system (PEMS). A difference in emission occurred depending on the RPM and load, and the emission of NOX was 497-2,060ppm, CO2 was 1.55-6.9%, and CO was 0.002-0.14%. The emission specified in the shop test provided by the engine manufacturer differed from the actual emission measured. This study proved that the maximum emission of each air pollutant generated in the entire sailing section of the ship was included in the PEMS measurement range, and the possibility of using PEMS for ships within 10,000GT was verified.

Empirical Analysis on the Cooling Load and Evaporation Efficiency of Fogging System in Greenhouses (온실의 냉방부하 및 포그시스템의 증발효율 실험분석)

  • Nam, Sang-Woon;Seo, Dong-Uk;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • In order to develop the cooling load estimation method in the greenhouse, the cooling load calculation formula based on the heat balance method was constructed and verified by the actual cooling load measured in the fog cooling greenhouse. To examine the ventilation heat transfer in the cooling load calculation formula, we measured ventilation rates in the experimental greenhouse which a cooling system was not operated. The ventilation heat transfer by a heat balance method showed a relatively good agreement. Evaporation efficiencies of the two-fluid fogging system were a range of 0.3 to 0.94, average 0.67, and it showed that they increased as the ventilation rate increased. We measured thermal environments in a fog cooling greenhouse, and calculated cooling load by heat balance equation. Also we calculated evaporative cooling energy by measuring the sprayed amount in the fogging system. And by comparing those two results, we could verify that the calculated and the measured cooling load showed a relatively similar trend. When the cooling load was low, the measured value was slightly larger than calculated, when the cooling load was high, it has been found to be smaller than calculated. In designing the greenhouse cooling system, the capacity of cooling equipment is determined by the maximum cooling load. We have to consider the safety factor when installed capacity is estimated, so a cooling load calculation method presented in this study could be applied to the greenhouse environmental design.

Pullout Behavior of Mechanically Stabilized Earth Wall Abutment by Steel Reinforcement and Backfill Properties (금속 보강재와 채움재 특성에 따른 보강토교대의 인발거동 분석 연구)

  • Kim, Taesu;Lee, Soo-Yang;Nam, Moon S.;Han, Heuisoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.750-757
    • /
    • 2018
  • The mechanically stabilized earth wall abutment is an earth structure using a mechanically stabilized earth wall and it uses in-extensional steel reinforcements having excellent friction performance. In order to analyze the pullout behavior of in-extensional steel reinforcements usually applied on the mechanically stabilized earth wall abutment, effects of stiffness and particle-size distributions of backfills and also horizontal spacings were considered in this study. As a result of parametric analyses, the highest pulling force acted on the uppermost reinforcement, and the stiffness and the particle-size distributions of the backfill significantly affected the pulling resistance of the reinforced soils. The internal friction angle of backfills should be at least 25 degrees, the coefficient uniformity factor should be at least 4, and the horizontal spacing of the uppermost steel reinforcement should be less than 25cm. Therefore, in order to secure the pullout resistance of the reinforced soil, it is necessary a properly spacing of reinforcement and more strict quality control for the backfill.

Evaluation of Liquefaction Potential for Marine Silty Sand Deposits during Earthquake (서해안 사질토지반의 지진시 액상화 예측)

  • 이희명;정두영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.23-33
    • /
    • 1994
  • Liquefaction characteristics of the reclaimed marine sand deposits is studied by means of the dynamic response analysis and the cyclic triaxial compression test. 1) From the result of the dynamic response analysis. it was found that the amplification of ground surface maximum acceleration varied with input earthquake motions and soil data, and earthquake coefficients were proposed to be applicable in evaluating liquefaction potential by simplified prediction methods. 2) For upper and soft sand deposits with small N-value, liquefaction strengths estimated by Seed and Idriss's simplified method were lower than those by the cyclic triaxial test while those by Iwasaki & Tatsuoka's or Vs-method were not lower. 3) Simplified methods were inclined to overestimate liquefaction potential in comparison with the dynamic response analysis and the cyclic triaxial compression test Allowable depths of liquefaction(safety factor 1) were estimated to be 7-14m for 0.1 -0.2g of input maximum acceleration.

  • PDF

Optimal Design using Flow-structure Interaction Analysis Method of Engine Generator Cooling Fan (엔진발전기 냉각팬의 유동-구조 연성해석 기법을 이용한 최적설계)

  • Kim, Seung Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.3
    • /
    • pp.47-53
    • /
    • 2020
  • In this study, the optimization design data was presented by analyzing the performance and durability of the cooling fan by one-way fluid-structure interaction analysis of the cooling fan shape used in the engine generator. For this purpose, a steady-state analysis was performed on the flow field inside the cooling fan, and the durability was analyzed by using the steady-state calculation results as input data for structural analysis. Six types were modeled for fluid analysis by changing the blade and sweep angle of the cooling fan, and the ratio of mass flow rate and torque was best in A type, but B type with relatively large mass flow rate was the best. It was judged to have flow performance. As a result of examining the structural analysis by setting the four blade thickness of the B type selected through the fluid analysis, it was judged that B Type-3 is the most suitable when considering the fatigue safety factor.

Influence analysis of continuous pile walls on the behavior of a soil tunnel at the shallow depth through a parametric study (민감도 분석을 통한 주열식벽체가 저토피 토사터널 거동에 미치는 영향 분석)

  • You, Kwang-Ho;Yoon, Woo-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.75-89
    • /
    • 2014
  • In recent years, utilization of underground space has been increasing in various parts of the world. In particular, open-cut method is usually applied to the shallow depth excavation. However some problems such as extreme traffic congestion and unstability of adjacent structures etc. might occur. In order to cope with these problems, the M-CAM (Modified Cellular Arch Method) method was proposed to excavate soil tunnels at shallow depth with secured enough stability and minimized construction period. In this study, sensitivity analysis was performed to predict the influence of the size of CPW(Continuous Pile Wall) and ground conditions on the behavior of the tunnel. First of all, embedded depth and diameter (or thickness) of CPW, coefficient of lateral earth pressure, and ground conditions were selected as parameters that could affect tunnel stability. Meanwhile, FLAC 2D based on finite difference method was used for numerical analysis. As a result of this study, it was checked out that embedded depth among sizes of CPW had a greatest influence on the stability of a tunnel.

Integral Method of Stability Analysis and Maintenance of Slope (비탈면 안정해석과 유지관리의 통합해석기법)

  • Park, Mincheol;Yoo, Byeongok;Baek, Yong;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.3
    • /
    • pp.27-35
    • /
    • 2016
  • Even if the various data analyzing methods were suggested to examine the measured slope behaviors, it is difficult to find methods or procedures for connecting the analyzed results of slope stability and measured slope data. This research suggests the analyzing methods combing the stability analysis and measured data based on progressive failure of slope. Slope failure analysis by time degradation were calculated by strength parameters composed of strength reduction coefficients, also which were compared to the measured data according to the variations of safety factor and displacement of slopes. The accumulated displacement curve were shown as 3rd degree polynomials by suggested procedures, which was the same as before researches. The reverse displacement velocity curves were shown as linear function for prediction of brittle slope failures, also they were shown as 3rd degree polynomials for ductile slope failures, which were the same as the suggested equation by Fukuzono (1985) and they were very similar behaviors to the in-situ failure cases.

Structural analysis of a thick composite rotor hub system by using equivalent properties (등가 물성을 이용한 두꺼운 복합재 로터 허브 시스템의 구조 해석)

  • ;Yanti Rachmadini
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.7-14
    • /
    • 2003
  • Modeling of thick composite structures for finite element analysis is relatively complicated. 2-D plane elements may cause inaccurate result since the plane stress condition cannot be applicable in these structures. Therefore a 3-D modeling should be used. However, the difficulty to model all the layers with different material properties and ply orientation arise in this case. In this paper, an equivalent modeling is proposed and numerically tested for analysis of thick composite structures. By grouping layers with same material and ply orientation, number of elements through the thickness is remarkably reduced and still the result is close enough to the one from a detail finite element model. MSC/NASTRAN and PATRAN are used for the analysis. The proposed modeling technique has been applied for analysis of composite rotor hub system designed by Korea Aerospace Research Institute(KARI). Using the proposed equivalent modeling technique, we could conduct stress analysis for the hub system and check the safety factor of each part.

Parameter Estimation and Reliability Analysis Using Bayesian Approach for Bolted Joint and O-ring Seal of Solid Rocket Motor (고체 로켓 모터의 체결 볼트와 오링에 대한 베이지안 접근법 기반 모수 추정과 신뢰성 해석)

  • Gang, Jin Hyuk;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1055-1064
    • /
    • 2017
  • Since a device such as a rocket motor requires very high reliability, a reasonable reliability design process is essential. However, Korea has implemented a design method for applying a safety factor to each component. In classic reliability analysis, input variables such as mean and standard deviation, used in the limit state function, are treated as deterministic values. Because the mean and standard deviation are determined by a small amount of data, this approach could lead to inaccurate results. In this study, reliability analysis is performed for bolted joints and o-ring seals, and the Bayesian approach is used to statistically estimate the input variables. The estimated variables and failure probability, calculated by the reliability analysis, are derived in the form of probability distributions.