• Title/Summary/Keyword: 아연-공기 전지

Search Result 37, Processing Time 0.023 seconds

Preparation and Electrochemical Properties of Pr1-x (Sr, Ca)xCoO3 Cathode Materials for Zinc Air Batteries (아연공기전지용 Pr1-x (Sr, Ca)xCoO3 양극촉매 제조 및 전기화학적 특성)

  • Heo, Sang-Hun;Eom, Seung-Wook;Kim, Hyun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.342-348
    • /
    • 2009
  • Zn/Air secondary batteries are high energy density type and environment-friendly. Also, they have safer properties than batteries of other type by low manufacturing cost and using the electrolyte solution. But, they have a weak concerning large output discharge. Oxygen evolution reaction(OER) and oxgen reduction reaction(ORR) in aqueous solution make a result of a decrease of cell efficiency and life span. Therefore, to minimize the voltage drop from between OCV and charge/discharge voltage is key point. The problem should be solved through developing catalysts of high efficiency. In this study, we synthesized $Pr_{1-x}(Sr,\;Ca)_x\;CoO_3$ powders by citric method and then measured physical characteristics of each powder by XRD, SEM, TGA etc. We examined its electrochemical properties by the cathodic polarization, anodic polarization and cyclic voltammogram. We achieved results that new catalysts showed better performances than existing $La_{1-x}Sr_xCoO_3$, $La_{1-x}Ca_xCoO_3$, ect. catalysts prepared in our lab.

Trend on the Recycling Technologies for the used Lithium Battery by the Patent Analysis (특허(特許)로 본 폐리튬전지 재활용(再活用) 기술(技術) 동향(動向))

  • Sohn, Jeong-Soo;Shin, Shun-Myung;Kang, Kyung-Seok;Choi, Mi-Jeong
    • Resources Recycling
    • /
    • v.16 no.3 s.77
    • /
    • pp.50-60
    • /
    • 2007
  • There are several kinds of battery such as zinc-air battery, lithium battery, Manganese dry battery, silver oxide battery, mercury battery, sodium-sulphur battery, lead battery, nickel-hydrogen secondary battery, nickel-cadmium battery, lithium ion battery, alkaline battery, etc. These days it has been widely studied for the recycling technologies of the used battery from view points of economy and efficiency. In this paper, patents on the recycling technologies of the used lithium battery were analyzed. The range of search was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1986 to 2006. Patents were collected using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

Trend on the Recycling Technologies for the used Manganese Dry Battery by the Patent Analysis (특허(特許)로 본 폐망간전지 재활용(再活用) 기술(技術) 동향(動向))

  • Shon, Jeong-Soo;Kang, Kyung-Seok;Han, Hye-Jung;Kim, Tae-Hyun;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.76-84
    • /
    • 2008
  • There are several kinds of battery such as zinc-air battery, lithium battery, manganese dry battery, silver oxide battery, mercury battery, sodium-sulphur battery, lead battery, nickel-hydrogen secondary battery, nickel-cadmium battery, lithium ion battery and alkaline battery, etc. These days it has been widely studied for the recycling technologies of the used battery from view points of economy and efficiency. In this paper, patents on the recycling technologies of the used manganese dry battery were analyzed. The range of search was limited in the open patents of USA (US), European Union (EP), Japan (JP), and Korea (KR) from 1986 to 2006. Patents were collected using key-words searching and filtered by filtering criteria. The trends of the patents were analyzed by the years, countries, companies, and technologies.

Electrochemical Characterization of Electrospun LaCoO3 Perovskite Nanofibers Prepared at Different Temperature for Oxygen Reduction and Evolution in Alkaline Solution (다양한 온도에서 합성한 전기방사 LaCoO3 페롭스카이트 나노섬유의 알칼리용액에서 산소환원 및 발생반응에 대한 전기화학 특성)

  • Lopez, Kareen J.;Sun, Ho-Jung;Park, Gyungse;Eom, Seungwook;Shim, Joongpyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.148-155
    • /
    • 2015
  • Electrospun $LaCoO_3$ perovskite nanofibers were produced for the air electrode in Zn-air rechargeable batteries using electrospinning technique with sequential calcination. The final calcination temperature was varied from 500 to $800^{\circ}C$ in order to determine its effect on the physical and electrochemical properties of the prepared $LaCoO_3$ perovskite nanofibers. The surface area of the electrospun $LaCoO_3$ perovskite nanofibers were observed to decrease with increasing final calcination temperature. Electrospun $LaCoO_3$ perovskite nanofibers calcined with final calcination temperature of $700^{\circ}C$ had the best electrocatalytic activity among the prepared perovskite nanofibers.

Size Effects of the Catalyst on Characteristics of Zn/Air Batteries (MnO2입자 크기에 따른 아연공기전지의 특성연구)

  • 김지훈;엄승욱;문성인;윤문수;김주용;박정식;박정후
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1150-1154
    • /
    • 2003
  • The voltage profile during discharge of the zinc air battery has very flat pattern until reach to end of discharge voltage. But, when zinc air battery is discharged by high current, the discharge voltage and energy becomes low. Therefore, we focused on effects of catalyst size to solve this problems by increasing active sites of oxygen reduction reaction. The size of catalyst was reduced from 27 to l${\mu}{\textrm}{m}$ and we examined average discharge voltage, capacity, energy, resistance and characteristics during GSM pulse discharge of zinc air battery with change of current density. And we also measured porosity of the cathode according to the ASTM. So we have got improvement of average discharge voltage and energy when catalyst was minimized and we have got optimum size of catalyst at 5${\mu}{\textrm}{m}$.

Development of Zinc Air Battery for Cellular Phone (휴대전화기용 아연공기전지 개발)

  • Eom, Seung-Wook;Kim, Jee-Hoon;Moon, Seong-In;Yun, Mun-Soo;Kim, Ju-Yong;Park, Jeong-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1083-1088
    • /
    • 2004
  • Zinc air batteries obtain their energy density advantage over the other batteries by utilizing ambient oxygen as the cathode materials, and reusing cathode as recycled form. And specific capacity of zinc powder is as high as 820mAh/g. Our research team succeeded in producing 2.4 Ah class zinc air battery for cellular phone application. In this paper we had studied performance of cathode according to various factors and demonstrated the performance of 2.4 Ah class zinc air battery for cellular phone application.

  • PDF

Electrochemical Properties of Gel Polymer Electrolyte including Zinc Acetate Dihydrate for Zinc-Air Batteries (아연-공기 전지용 아세트산 아연 이수화물을 첨가한 고분자 전해질의 전기화학적 특성)

  • Hui Seo Kim;Dong Yun Lee;Yong Nam Jo
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.550-557
    • /
    • 2023
  • In zinc-air batteries, the gel polymer electrolyte (GPE) is an important factor for improving performance. The rigid physical properties of polyvinyl alcohol reduce ionic conductivity, which degrades the performance of the batteries. Zinc acetate is an effective additive that can increase ionic conductivity by weakening the bonding structure of polyvinyl alcohol. In this study, polymer electrolytes were prepared by mixing polyvinyl alcohol and zinc acetate dihydride. The material properties of the prepared polymer electrolytes were analyzed by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Also, Electrochemical impedance spectroscopy was used to calculate ionic conductivity. The electrolyte resistances of GPE, 0.2 GPE, 0.4 GPE, and 0.6 GPE were 0.394, 0.338, 0.290, and 0.213 Ω, respectively. In addition, 0.6 GPE delivered 0.023 S/cm high ionic conductivity. Among all of the polymer electrolytes tested, 0.6 GPE showed enhanced cycle life performance and the highest specific discharge capacity of 11.73 mAh/cm2 at 10 mA. These results verified that 0.6 GPE improves the performance of zinc-air batteries.

Size Effects of the Catalyst on Characteristics of Zn/Air Batteries ($MnO_2$입자 크기에 따른 아연공기전지의 특성연구)

  • Kim, Jee-Hoon;Eom, Seung-Wook;Moon, Seong-In;Yun, Mun-Soo;Kim, Ju-Yong;Yug, Gyeong-Chang;Park, Jeong-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1129-1131
    • /
    • 2002
  • Zinc Air battery obtain their energy density advantage over the other batteries by utilizing ambient oxygen as the cathode materials, and reusing cathode as recycled form. And specific capacity of zinc powder is as high as 820mAh/g. When Zinc Air battery discharged by low rate current discharge voltage profile has very flat pattern until end of voltage. But, when Zinc Air battery discharged by high rate current discharge voltage and capacity become lower. Therefore, we focused on effects of catalyst size in cathode. So we examined performance of zinc air batteries, average discharge voltage, capacity, energy, resistance. And we also obtained resistance by the GSM pulse discharge. So we have got optimum size of catalyst for Zinc Air battery.

  • PDF

Effects of Electrolyte Concentration on Electrochemical Properties of Zinc-Air Batteries (전해질 농도에 따른 아연-공기 전지의 전기화학적 특성)

  • Han, Ji Woo;Jo, Yong Nam
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.798-803
    • /
    • 2019
  • The self-discharge behavior of zinc-air batteries is a critical issue induced by corrosion and hydrogen evolution reaction (HER) of zinc anode. The corrosion reaction and HER can be controlled by a gelling agent and concentration of potassium hydroxide (KOH) solution. Various concentrations of KOH solution and polyacrylic acid have been used for gel electrolyte. The electrolyte solution is prepared with different concentrations of KOH (6 M, 7 M, 8 M, 9 M). Among studied materials, the cell assembled with 6 M KOH gel electrolyte exhibits the highest specific discharge capacity and poor capacity retention. Whereas, 9 M KOH gel electrolyte shows high capacity retention. However, a large amount of hydrogen gas is evolved with 9 M KOH solution. In general, the increase in concentration is related to ionic conductivity. At concentrations above 7 M, the viscosity increases and the conductivity decreases. As a result, compared to other studied materials, 7 M KOH gel electrolyte is suitable for Zn-air batteries because of its higher capacity retention (92.00 %) and specific discharge capacity (351.80 mAh/g) after 6 hr storage.