Browse > Article
http://dx.doi.org/10.7316/KHNES.2015.26.2.148

Electrochemical Characterization of Electrospun LaCoO3 Perovskite Nanofibers Prepared at Different Temperature for Oxygen Reduction and Evolution in Alkaline Solution  

Lopez, Kareen J. (Department of Nano & Chemical Engineering, Kunsan National University)
Sun, Ho-Jung (Department of Material Science & Engineering, Kunsan National University)
Park, Gyungse (Department of Chemistry, Kunsan National University)
Eom, Seungwook (Battery Research Center Korea Electrotechnology Research Institute)
Shim, Joongpyo (Department of Nano & Chemical Engineering, Kunsan National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.26, no.2, 2015 , pp. 148-155 More about this Journal
Abstract
Electrospun $LaCoO_3$ perovskite nanofibers were produced for the air electrode in Zn-air rechargeable batteries using electrospinning technique with sequential calcination. The final calcination temperature was varied from 500 to $800^{\circ}C$ in order to determine its effect on the physical and electrochemical properties of the prepared $LaCoO_3$ perovskite nanofibers. The surface area of the electrospun $LaCoO_3$ perovskite nanofibers were observed to decrease with increasing final calcination temperature. Electrospun $LaCoO_3$ perovskite nanofibers calcined with final calcination temperature of $700^{\circ}C$ had the best electrocatalytic activity among the prepared perovskite nanofibers.
Keywords
Zn-air battery; air electrode; perovskite; $LaCoO_3$; nanofiber; oxygen reduction; oxygen evolution;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S.-M. Lee, Y.-J.Kim, S.-W. Eom, N.-S. Choi, K.-W. Kim, S.-B. Cho, "Improvement in selfdischarge of Zn anode by applying surface medication for Zn-air batteries with high energy density", J. Power Sources, Vol. 227, 2013. p. 177   DOI
2 X. Wang, P.J. Sebastian, M.A. Smit, H. Yang, S.A. Gamboa, "Studies on the oxygen reduction catalyst for zinc-air battery electrode", J. Power Sources, Vol. 124, 2003, p.278.   DOI
3 J-S. Lee, S.T. Kim, R. Cao, N-S. Choi, M. Liu, K.T. Lee, J. Cho, "Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air", Adv. Energy Materials, Vol. 1, No. 1, 2011, p. 34.   DOI
4 J.J. Martin, V. Neburchilov, H. Wang, W. Qu, "Air Cathodes for Metal-Air Batteries and Fuel Cells" IEEE Electrical Power & Energy Conference, 2009.
5 T. Cutler, "A Design Guide for Rechargeable Zinc-air Battery Technology", Southcon 96 conference, 1996, p. 616.
6 D.U. Lee, J. Scott, H.W. Park, S. Abureden, J.-Y. Choi, Z. Chen, "Morphologically controlled $Co_{3}O_{4}$ nanodisks as practical bi-functional catalyst for rechargeable zinc-air battery applications", Electrochem. Comm., Vol. 43, No. 6, 2014, p. 109   DOI
7 T-H. Yang, S. Venkatesan, C-H. Lien, J-L. Chang, J-M. Zen, "Nafion/lead oxide- mangaese oxide combined catalyst for use as a highly efficient alkaline air electrode in zinc-air battery", Electrochim. Acta, Vol. 56, No. 17, 2011, p. 6205.   DOI
8 Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, Z. Chen, "Highly Active and Durable Core-Corona Structured Bifunctional Catalyst for Rechargeable Metal-Air Battery Application", Nano Lett., Vol. 12, No. 4, 2012, p. 1946   DOI
9 M. Li, L. Zhang, Q. Xu, J. Niu, Z. Xia, "Ndoped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations", J. Catalysis, Vol. 314, 2014, p. 66.   DOI
10 M. Prabu, S. Shanmugam, "$NiCo_2O_4$- Graphene Oxide Hybrid as a bifunctional Electrocatalyst for Air Breathing Cathode Material in Metal Air Batteries", Int. Conf. Adv. Nanomaterials & Emerging Eng. Tech., 2013, p. 468.
11 M. Hilder, B. Winther-Jensen, N.B. Clark, "The effect of binder and electrolyte on the performance of thin zinc-air battery", Electrochim. Acta, Vol. 69, 2012, p. 308.   DOI
12 H-J. Sun, M-Y. Cho, J-C. An, S. Eom, G. Park, J. Shim, "Characterization of $LaCoO_3$ Perovskite Catalyst for Oxygen Reduction Reaction in Znair Rechargeable Batteries", Trans. Kor. Hydrogen New Energy Soc., Vol. 25, No. 4, 2014, p. 436.   DOI
13 T. Wang, M. Kaempgen, P. Nopphawan, G. Wee, S. Mhaisalkar, M. Srinivasan, "Silver nanoparticledecorated carbon nanotubes as bifunctional gasdiffusion electrodes for zinc-air batteries", J. Power Sources, Vol. 195, No. 13, 2010, p. 4350.   DOI
14 Z. Chen, A. Yu, R. Ahmed, H. Wang, H. Li, Z. Chen, "Manganese dioxide nanotube and nitrogendoped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery", Electrochim. Acta, Vol. 69, 2012, p. 295.   DOI
15 C. Zhu, A. Nobuta, I. Nakatsugawa, T. Akiyama, "Solution combustion synthesis of $LaMO_3$ (M = Fe, Co, Mn) perovskite nanoparticles and the measurement of their electrocatalytic properties for air cathode", Int. J. Hydrogen Energy, Vol. 38, No. 30, 2013, p. 13238.   DOI
16 J. Yuh, L. Perez, W.M. Sigmund, J.C. Nino, "Electrospinning of complex oxide nanofibers", Physica E, Vol. 37, No. 1-2, 2007, p. 254.   DOI
17 X. Dong, J. Wang, Q. Cui, G. Liu, W. Yu, "Fabrication of $LaNiO_3$ Porous Hollow Nanofibers via an Electrospinning Technique", Modern Applied Science, Vol. 3, No. 1, 2009, p. 75.
18 K. Rida, M.A. Pea, E. Sastre, A. Martinex-Aris, "Effect of calcination temperature on structural properties and catalytic activity in oxidation reactions of LaNiO3 perovskite prepared by Pechini method", J. Rare Earths, Vol. 30, No. 3, 2012, p. 211.
19 J. Wang, X. Dong, Z. Qu, G. Liu, W. Yu, "Fabrication and Characterization of $LaCoO_3$ nanofibers via an Electrospinning Techniques", Int. J. Chem., Vol. 2, No. 1, 2010, p. 161.
20 S. Ahn, K. Kim, H. Kim, S. Nam, S. Eom, "Synthesis and electrochemical performance of $La_{0.7}Sr_{0.3}Co_{1-x}Fe_xO_3$ catalysts for zinc air secondary batteries", Phys. Scr., Vol. T139, 2010, p. 014014   DOI
21 F.W.T. Goh, Z. Liu, T.S.A. Hor, J. Zhang, X. Ge, Y. Zong, A. Yu, W. Khoo, "A Near-Neutral Chloride Electrolyte for Electrically Rechargeable Zinc-Air Batteries", J. Electrochem. Soc., Vol. 161, No. 14, 2014, p. A2080.   DOI
22 B. Dong, Z. Li, Z. Li, X. Xu, M. Song, W. Zheng, C. Wang, S.S. Al-Deyab, M. El-Neweby, "Highly Efficient $LaCoO_3$ Nanofibers Catalysts for Photocatalytic Degradation of Rhodamine B", J. Am. Ceram. Soc., Vol. 93, No. 11, 2010, p. 3587.   DOI
23 J. Zhao, Y. Cheng, X. Yan, D. Sun, F. Zhu, Q. Xue, "Magnetic and electrochemical properties of $CuFe_2O_4$ hollow fibers fabricated by simple electrospinning and direct annealing", Cryst. Eng. Comm., Vol. 14, No. 18, 2012, p. 5879.   DOI
24 B. Sahoo, P.K. Panda, "Preparation and characterization of barium titanate nanofibers by electrospinning", Ceramics International, Vol. 38, No. 6, 2012, p. 5189.   DOI
25 M.J. Lee, J.H. Jun, J.S. Jung, Y.R. Kim, S.H. Lee, "Catalytic activities of perovskite-type $LaBO_3$ (B = Fe, Co, Ni) oxides for partial oxidation of methane". Bull. Korean Chem. Soc., Vol. 26, No. 10, 2005, p. 1591.   DOI
26 D.K. Kang, Y.I. Lee, J.M. Sohn, "Study on the Selective CO Oxidation Using $La_xCe_{1-x}Co_yCu_{1-y}O_{3-{\alpha}}$ Perovskite Catalysts", Trans. Kor. Hydrogen New Energy Soc., Vol. 18, No. 1, 2007, p. 32.