• Title/Summary/Keyword: 아마레나

Search Result 21, Processing Time 0.021 seconds

Current Research Trends in Polyamide Based Nanocomposite Membranes for Desalination (해수담수화용 폴리아마이드 기반 나노복합막의 최신 연구동향)

  • Lee, Tae Hoon;Lee, Hee Dae;Park, Ho Bum
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.351-364
    • /
    • 2016
  • In recent decades, many researchers have tried to improve desalination performances of polyamide (PA) thin-film composite membranes (TFCs) by incorporating nanomaterials into a selective PA layer. This review focuses on PA-based nanocomposite membranes with high performances for energy-effective desalination in reverse osmosis. Carbon based nanomaterial (e.g., graphene oxide (GO), carbon nanotubes (CNT)) and/or other nanoparticles (e.g., zeolite, silica and etc.,) were applied to overcome the trade-off correlation between water permeability and salt rejection of current polymeric desalination membranes. Here, this brief review will discuss current studies of PA-based nanocomposite membranes with enhanced separation characteristics and provide the future research direction to achieve further improved desalination performances.

Review on Changes in Surface Properties and Performance of Polyamide Membranes when Exposed to Acidic Solutions (산성용액 노출 시 폴리아마이드 분리막의 표면성질 및 투과성능 변화에 관한 총설)

  • Lee, Hyung Kae;Dao, Huyen Thi Thanh;Kang, Wooseok;Kwon, Young-Nam
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.283-292
    • /
    • 2020
  • Various kind of solutions need to be separated, purified, and concentrated using membranes in the field of industries. However, when the solution contains strong acids, the use of membrane is limited. Acid resistant membrane currently available in market does not show high efficiency of flux. This review explains the causes and mechanisms of changes in surface properties and performance of polyamide membranes when exposed to acidic solutions, and this can be used in the development of a membrane with acid resistance and high flux.

Preparation and Characterization of Polyamide Thin Film Composite Reverse Osmosis Membranes Using Hydrophilic Treated Microporous Supports (친수성 처리된 다공성 지지체를 이용한 폴리아마이드 박막 역삼투 복합막 제조 및 특성 분석)

  • Son, Seung Hee;Jegal, Jonggeon
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.317-324
    • /
    • 2014
  • It is very well known that the conventional polyamide (PA) thin film composite (TFC) reverse osmosis (RO) membranes have excellent permselective properties, but their chlorine tolerance is not good enough. In this study, to improve such chlorine tolerance, microporous membranes containing hydrophilic functional groups such as -COOH were used as a support to prepare PA TFC RO membranes, employing the conventional interfacial polymerization method. Meta-phenylene diamine (MPD) and 2,6-diamine toluene (2,6-DAT) were used as diamine monomers and tri-mesoyl chloride (TMC) as an acid monomer. The membranes prepared were characterized using various instrumental analytical methods and permeation test set-up. The flux obtained from the membranes prepared so was more than $1.0m^3/m^2day$ at 800 psi of operating pressure, while the salt rejection was over 99.0%. The chlorine tolerance of them was also found to be better than that of the membrane prepared by using conventional polysulfone support without hydrophilic functional groups.

Chlorine Disinfection in Water Treatment Plants and its Effects on Polyamide Membrane (수처리장에서의 염소살균처리가 폴리아마이드 분리막에 미치는 영향)

  • Jun, Byung-Moon;Yun, Eun-Tae;Han, Sang-Woo;Nguyen, Thi Phuong Nga;Park, Hyung-Gyu;Kwon, Young-Nam
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.88-99
    • /
    • 2014
  • Demand for water is increasing due to rapid population growth and increased industrial activities. Membrane technologies have attracted most attention as a promising advanced technology for the supply of sustainable water resources. Chemical and structural properties of polyamide membranes, one of the most widely used membranes in water treatment plant, has been reported to be affected by residual chlorine dissolved in water after chlorine disinfection. This paper focuses on the chlorine speciation at various solution pHs and change of surface properties/performance of polyamide membranes due to the chlorine exposure.

Study on the Membrane Cleaning-in-place (CIP) Conditions for the Dye Wastewater Treatment Process Using Polyamide Composite Membranes (폴리아마이드계 복합막을 이용한 염료 폐수 처리 공정 분리막 세척 조건 연구)

  • JeGal, Jong-Geon;Lee, Yong-Hwan;Hwang, Jeong-Eun;Jaung, Jae-Yun
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.94-102
    • /
    • 2008
  • For the treatment of the dye wastewater, a polyamide nano-composite membrane and reverse osmosis (RO) membranes were prepared using interfacial polymerization technique, in which piperazine, meta-phenylene diamine, and trimesoyl chloride were used as monomers, Their permselective properties were characterized with aqueous solutions of PEG 600, $Na_2SO_4$, and NaCl, and their performance was compared with that of Osmonics Co, They were found to be a typical nano-composite membrane and a low pressure RO membrane. Using them, a real dye wastewater supplied from the Kyungin Corporation, one of the domestic dye producer, was treated, studying the separation performances of the membranes, Also, during the wastewater treatment, cleaning in place (CIP) of the membranes was carried out regularly to recover the flux of the membranes. Three different chemical cleaners were employed for the CIP process and their performance were compared in this study.

Change of Surface Morphology with the Spreading Rate of Organic Solution During Interfacial Polymerization for Polyamide-based Thin Film Composite Membrane Manufacturing Process (폴리아마이드계 박막복합막 제조 공정에서 계면중합의 유기용액 퍼짐 속도에 따른 표면 모폴로지의 변화)

  • Park, Chul Ho
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.506-510
    • /
    • 2017
  • The interfacial polymerization method has been applied to various fields as a reaction in which reactive monomers dissolved in two immiscible solutions cause polymerization at the interface. In the case of water treatment membranes, m-phenylene diamine and trimesoyl chloride are used as reactants. The performance of the membrane is affected by various polymerization factors. In this study, we investigated how the spreading rate of the organic solution influences the surface and structure of the membrane. Spreading rate of organic solutions was adjusted to 7.6 and 25 mm/sec. The solution volume of the organic phase was adjusted to 1~3 drops. The observed results showed that cracks were not found in the polyamide membrane when dropping at a drop of 7.6 mm/sec and dropping two drops at 25 mm/sec. On the other hand, cracks occurred in all cases. Therefore, the spreading rate of the initial organic solvent is expected to greatly affect the performance of the polyamide membrane.

Use of Flour-Impregnated Polysulfone Membranes for Measuring Radioactive Contamination in Laboratories (실험실 방사성핵종 오염도 측정에 있어 Fluor 함침 폴리설폰 막의 이용)

  • 한명진
    • Membrane Journal
    • /
    • v.9 no.2
    • /
    • pp.132-139
    • /
    • 1999
  • Solid scintillation proximity membranes were prepared for measuring the amount of radioactivity in laboratories contaminated by the radionuclide of $^3H$-cortisol. The membranes, consisting of polysulfone as a polymer matrix and cerium activated yttrium silicate as a fluor, were used to monitor the amount of radioactivity without the aid of a scintillation cocktail required for the conventional wipe test. The test results of the cocktail-free wipe test showed that the prepared membranes were efficient to monitor radionuclide-contaminated areas with the good counting ability as well as with the decrease of overall production of radioactive waste. On the other hand, solvent treatment of the prepared membranes could induce a significant variation of membrane morphology, but the counting efficiency of the solvent-treated membranes was not improved than that of the untreated one.

  • PDF

Two Dimensional (2D) Nanomaterials based Composite Membrane for Desalination (2차원 나노재료 기반 복합막을 이용한 해수담수화)

  • Lee, Yu Kyung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.111-123
    • /
    • 2020
  • Growing industrialization and climate change lead to the huge demand for clean drinking water. Desalination of sea water by membrane separation process is one of the alternative and economically viable methods to fulfil the demand for water. In the membrane separation process, the presence of 2D materials enhances the performance of membrane by facilitating the water permeation, salt rejection, flux rate, and selectivity compared to the traditional reverse osmosis thin-film-composite membranes. In this review, composite membranes with different kinds of 2D materials are discussed on the basis of materials synthesis, characterization and desalination process.

Forward Osmosis Technology for Concentrating the Heavy Water (중수 농축을 위한 정삼투 기술)

  • Chul Ho Park;Seong Bae Cho;Ook Choi
    • Membrane Journal
    • /
    • v.33 no.2
    • /
    • pp.70-76
    • /
    • 2023
  • Heavy water (D2O) can induce various biochemical changes in comparison with light water (H2O). In order to reduce excessive energy consumption, which is a disadvantage of the existing separation process, we conduct the forward osmosis with electrospun polyamide membranes. NaCl and phosphoric acid were used as draw solutions. FT-IR spectroscopy was used to quantify the concentration of heavy water. It was observed that phosphoric acid could concentrate heavy water through a forward osmosis process and its special interaction with hydrogen/deuterium (H/D) was spectrophotometrically confirmed.