DOI QR코드

DOI QR Code

Forward Osmosis Technology for Concentrating the Heavy Water

중수 농축을 위한 정삼투 기술

  • Chul Ho Park (Jeju Global Research Center, Korea Institute of Energy Research) ;
  • Seong Bae Cho (OCI Carbon/Performance) ;
  • Ook Choi (Research Institute of Basic Sciences, Incheon National University)
  • 박철호 (한국에너지기술연구원 제주글로벌연구센터) ;
  • 조성배 (OCI Carbon/Performance Chemical 사업팀) ;
  • 최욱 (인천대학교 기초과학연구센터)
  • Received : 2023.02.28
  • Accepted : 2023.04.17
  • Published : 2023.04.30

Abstract

Heavy water (D2O) can induce various biochemical changes in comparison with light water (H2O). In order to reduce excessive energy consumption, which is a disadvantage of the existing separation process, we conduct the forward osmosis with electrospun polyamide membranes. NaCl and phosphoric acid were used as draw solutions. FT-IR spectroscopy was used to quantify the concentration of heavy water. It was observed that phosphoric acid could concentrate heavy water through a forward osmosis process and its special interaction with hydrogen/deuterium (H/D) was spectrophotometrically confirmed.

중수는 경수와 다른 물리화학적 특징으로 다양한 생물화학적 변화를 유도할 수 있다. 기존 분리공정의 단점인 에너지소비량을 줄이고자 전기방사 폴리아마이드 분리막을 이용하여 정삼투공정을 이용하였다. 유도용액으로 NaCl과 인산을 사용하였다. 중수농도를 정량화하기 위해 FT-IR 분광법을 활용하였다. 인산과 수소/중수소의 특별한 상호작용력을 분광학적으로 확인하였으며, 정삼투공정으로 농축이 가능할 수 있다는 것을 관찰하였다.

Keywords

Acknowledgement

이 연구는 2023년도 산업통상자원부 및 산업기술평가관리원 (KEIT) 연구비 지원에 의한 연구(Project number: 20011497)입니다.

References

  1. S. B. Cho, C. H. Park, and D. H. Choi, "Research trend of electronic material industries based on deuterium", Information Display, 21, 19 (2020). 
  2. EPICA community members (L. Augustin, C. Barbante, P. R. F. Barnes, J. Marc Barnola, M. Bigler, E. Castellano, O. Cattani, J. Chappellaz, D. Dahl-Jensen, B. Delmonte, G. Dreyfus, G. Durand, S. Falourd, H. Fischer, J. Fluckiger, M. E. Hansson, P. Huybrechts, G. Jugie, S. J. Johnsen, J. Jouzel, P. Kaufmann, J. Kipfstuhl, F. Lambert, V. Y. Lipenkov, G. C. Littot, A. Longinelli, R. Lorrain, V. Maggi, V. Masson- Delmotte, H. Miller, R. Mulvaney, J. Oerlemans, H. Oerter, G. Orombelli, F. Parrenin, D.A. Peel, J.-R. Petit, D. Raynaud, C. Ritz, U. Ruth, J. Schwander, U. Siegenthaler, R. Souchez, B. Stauffer, J. Peder Steffensen, B. Stenni, T. F. Stocker, I. E. Tabacco, R. Udisti, R. S. W. van de Wal, M. van den Broeke, J. Weiss, F. Wilhelms, J.-G. Winther, E. W. Wolff, and M. Zucchelli), "Eight glacial cycles from an Antarctic ice core", Nature, 429, 623 (2004).  https://doi.org/10.1038/nature02599
  3. V. V. Goncharuk, A. A. Kavitskaya, I. Y. Romanyukina, and O. A. Loboda, "Revealing water's secrets: deuterium depleted water", Chem. Cent. J., 7, 103 (2013). 
  4. H. C. Urey, F. G. Brickwedde, and G. M. Murphy, "A Hydrogen Isotope of Mass 2", Phys. Rev., 39, 164 (1932). 
  5. G. N. Lewis and R. T. Macdonald, "Concentration of H2 Isotope", J. Chem. Phys., 1, 341 (1933). 
  6. D.J. Kushner, A. Baker, and T. G. Dunstall, "Pharmacological uses and perspectives of heavy water and deuterated compounds", Can. J. Physiol. Pharmacol., 77,79 (1999). 
  7. X. Zhang, M. Gaetani, A. Chernobrovkin, and R. A. Zubarev, "Anticancer effect of deuterium depleted water - Redox disbalance leads to oxidative stress", Mol. Cell Proteomics, 18, 2373 (2019). 
  8. H. K. Rae, "Selecting heavy water processes", In: Separation of Hydrogen Isotopes, pp. 1, American Chemical Society, Washington, USA (1978). 
  9. M. Lozada-Hidalgo, S. Zhang, S. Hu, A. Esfandiar, I. V. Grigorieva, and A. K. Geim, "Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping", Nat. Commun., 8, 15215 (2017). 
  10. Y. Su, K.-i. Otake, J.-J. Zheng, S. Horike, S. Kitagawa, and C. Gu, "Separating water isotopologues using diffusion-regulatory porous materials", Nature, 611, 289 (2022). 
  11. C. H. Park, H. Bae, S. J. Kwak, M. S. Jang, J.-H. Lee, and J. Lee, "Interconnection of electrospun nanofibers via a post co-solvent treatment and its open pore size effect on pressure-retarded osmosis performance", Macromol. Res., 24, 314 (2016). 
  12. I. Litvak, Y. Anker, and H. Cohen, "On-line in situ determination of deuterium content in water via FTIR spectroscopy", RSC Adv., 8, 28472 (2018). 
  13. J. R. Grigera, "An effective pair potential for heavy water", J. Chem. Phys., 114, 8064 (2001). 
  14. H. Li, Y. Shen, P. Yang, J. E. S. Szymanowski, J. Chen, Y. Gao, P. C. Burns, U. Kortz, and T. Liu, "Isotope and hydrogen-bond effects on the self-assembly of macroions in dilute solution", Chem. Eur. J., 25, 16288 (2019). 
  15. A. B. Mamonov, R. D. Coalson, M. L. Zeidel, and J. C. Mathai, "Water and deuterium oxide permeability through aquaporin 1: MD predictions and experimental verification", The Journal of general physiology, 130, 111 (2007). 
  16. K. Park, Y. Kim, and K. J. Lee, "Analysis of deuterated water contents using FTIR bending motion", J. Radioanal. Nucl. Chem., 322, 487 (2019). 
  17. F. Foglia, B. Frick, M. Nania, A. G. Livingston, J. and T. Cabral, "Multimodal confined water dynamics in reverse osmosis polyamide membranes", Nat. Commun., 13, 2809 (2022). 
  18. A. Stefaniuk, S. Gawinkowski, B. Golec, A. Gorski, K. Szutkowski, J. Waluk, and J. Poznanski, "Isotope effects observed in diluted D2O/H2O mixtures identify HOD-induced low-density structures in D2O but not H2O", Sci. Rep., 12, 18732 (2022). 
  19. Y. Marcus and A. Ben-Naim, "A study of the structure of water and its dependence on solutes, based on the isotope effects on solvation thermodynamics in water", J. Chem. Phys., 83, 4744 (1985). 
  20. C. V. Krishnan and H. L. Friedman, "Solvation enthalpies of various ions in water and heavy water", J. Phys. Chem., 74, 2356 (1970). 
  21. G. Jakli and W.A. Van Hook, "Isotope effects in aqueous systems. Excess thermodynamic properties of 1,3-dimethylurea solutions in H2O and D2O", Journal of Chemical & Engineering Data, 42,1274 (1997). 
  22. B. D. Lindley, T. Hoshiko, and D. E. Leb, "Effects of D2O and osmotic gradients on potential and resistance of the isolated frog skin", J. Gen. Physiol., 47, 773 (1964). 
  23. H. Higuchi, M. Miyagawa, and H. Takaba, "Solvent-solute interaction effect on permeation flux through forward osmosis membranes investigated by non-equilibrium molecular dynamics", Membranes, 12, 1249 (2022). 
  24. O. Choi, P. G. Ingole, and C. H. Park, "Precision-aiming tuning of membranes prepared by NIPS and its performance enhancement", J. Clean. Prod., 365, 132858 (2022). 
  25. O. Choi, D.-H. Peck, and C. H. Park, "High-performance nanofiltration of outer-selective thin-film composite hollow-fiber membranes via continuous interfacial polymerization", J. Ind. Eng. Chem., 103, 373 (2021). 
  26. C. H. Park, H. Bae, W. Choi, K. Lee, D.-g. Oh, J. Lee, and J.-H. Lee, "Thin film composite membrane prepared by interfacial polymerization as an ion exchange membrane for salinity gradient power", J. Ind. Eng. Chem., 59, 362 (2018). 
  27. C. H. Park, H. Bae, K.-S. Ryu, Y.-H. Nam, D.-J. Kim, G.-S. Lee, J.-J. Lee, S. I. Yoo, and B. Kim, "Foldable multiple-energies harvester consisting of a thin ion-exchange membrane prepared by a two-step interfacial polymerization", Desalination, 476, 114242 (2020). 
  28. C. H. Park and O. Choi, "Electrochemical energy-generating desalination system using a pressure-driven ion-selective nanomembrane", Nano Energy, 94, 106939 (2022). 
  29. Q. Hu, H. Zhao, S. Ouyang, Y. Liang, H. Yang, and X. Zhu, "The water structure around chloride ion investigated from D2O ↔ H2O substitution effect", J. Mol. Liq., 368, 120702 (2022). 
  30. J. Conrad and P. R. Tremaine, "Third dissociation constant of phosphoric acid in H2O and D2O from 75 to 300 ℃ at p = 20.4 MPa using Raman spectroscopy and a titanium-sapphire flow cell", Phys. Chem. Chem. Phys., 23, 10670 (2021).