Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.88

Chlorine Disinfection in Water Treatment Plants and its Effects on Polyamide Membrane  

Jun, Byung-Moon (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST))
Yun, Eun-Tae (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST))
Han, Sang-Woo (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST))
Nguyen, Thi Phuong Nga (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST))
Park, Hyung-Gyu (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST))
Kwon, Young-Nam (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST))
Publication Information
Membrane Journal / v.24, no.2, 2014 , pp. 88-99 More about this Journal
Abstract
Demand for water is increasing due to rapid population growth and increased industrial activities. Membrane technologies have attracted most attention as a promising advanced technology for the supply of sustainable water resources. Chemical and structural properties of polyamide membranes, one of the most widely used membranes in water treatment plant, has been reported to be affected by residual chlorine dissolved in water after chlorine disinfection. This paper focuses on the chlorine speciation at various solution pHs and change of surface properties/performance of polyamide membranes due to the chlorine exposure.
Keywords
polyamide; membrane; chlorine; mechanism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. N. Kwon and J. O. Leckie, "Hypochlorite degradation of crosslinked polyamide membranes - ii. Changes in hydrogen bonding behavior and performance", Journal of Membrane Science, 282, 456 (2006).   DOI   ScienceOn
2 Y. N. Kwon, C. Y. Tang, and J. O. Leckie, "Change of membrane performance due to chlorination of crosslinked polyamide membranes", J. Appl. Polym. Sci., 102, 5895 (2006).   DOI   ScienceOn
3 Q. Liu and D. W. Margerum, "Equilibrium and kinetics of bromine chloride hydrolysis", Environ. Sci. Technol., 35, 1127 (2001).   DOI   ScienceOn
4 E. A. Voudrias and M. Reinhard, "Reactivities of hypochlorous and hypobromous acid, chlorine monoxide, hypobromous acidium ion, chlorine, bromine, and bromine chloride in electrophilic aromatic-substitution reacions with p-xylene in water", Environ. Sci. Technol., 22, 1049 (1988).   DOI   ScienceOn
5 J. A. Sweetman and M. S. Simmons, "Production of bromophenols resulting from the chlorination of waters containing bromide ion and phenol", Water Res., 14, 287 (1980).   DOI   ScienceOn
6 V. L. Snoeyink and D. Jenkins, "Water chemistry", Wiley (1980).
7 Y. K. Kim, N. W. Kim, and Y. T. Lee, "A Study on Chlorine Resistance Improvement of Reverse Osmosis Membrane by Surface Modification", Membrane Journal, 15, 320 (2005).
8 R. W. Baker, "Membrane separation systems: Recent developments and future directions", William Andrew (1991).
9 Y. N. Kwon, R. Joksimovic, I. C. Kim, and J. O. Leckie, "Effect of bromide on the chlorination of a polyamide membrane", Desalination, 280, 80 (2011).   DOI   ScienceOn
10 T. Kawaguchi and H. Tamura, "Chlorine-resistant membrane for reverse osmosis - ii. Preparation of chlorine-resistant polyamide composite membranes", J. Appl. Polym. Sci., 29, 3369 (1984).   DOI   ScienceOn
11 S. Hong, I. C. Kim, T. Tak, and Y. N. Kwon, "Interfacially synthesized chlorine-resistant polyimide thin film composite (tfc) reverse osmosis (ro) membranes", Desalination, 309, 18 (2013).   DOI   ScienceOn
12 J.-Y. Koo, R. J. Petersen, and J. E. Cadotte, "Esca characterization of chlorine-damaged polyamide reverse osmosis membrane", Polymer Preprints Division of Polymer Chemistry American Chemical Society, 27, 391 (1986).
13 S. Avlonitis, W. T. Hanbury, and T. Hodgkiess, "Chlorine degradation of aromatic polyamides", Desalination, 85, 321 (1992).   DOI   ScienceOn
14 C. Y. Y. Tang, Y. N. Kwon, and J. O. Leckie, "Probing the nano- and micro-scales of reverse os mosis membranes - a comprehensive characterization of physiochemical properties of uncoated and coated membranes by xps, tem, atr-ftir, and streaming potential measurements", Journal of Membrane Science, 287, 146 (2007).   DOI   ScienceOn
15 N. P. Soice, A. C. Maladono, D. Y. Takigawa, A. D. Norman, W. B. Krantz, and A. R. Greenberg, "Oxidative degradation of polyamide reverse osmosis membranes: Studies of molecular model compounds and selected membranes", J. Appl. Polym. Sci., 90, 1173 (2003).   DOI   ScienceOn
16 M. Taniguchi, M. Kurihara, and S. Kimura, "Boron reduction performance of reverse osmosis seawater desalination process", Journal of Membrane Science, 183, 259 (2001).   DOI   ScienceOn
17 Y. N. Kwon, C. Y. Tang, and J. O. Leckie, "Change of chemical composition and hydrogen bonding behavior due to chlorination of crosslinked polyamide membranes", J. Appl. Polym. Sci., 108, 2061 (2008).   DOI   ScienceOn
18 Y. N. Kwon and J. O. Leckie, "Hypochlorite degradation of crosslinked polyamide membranes I. Changes in chemical/morphological properties", Journal of Membrane Science, 283, 21 (2006).   DOI   ScienceOn
19 C. Y. Y. Tang, Y. N. Kwon, and J. O. Leckie, "Characterization of humic acid fouled reverse osmosis and nanofiltration membranes by transmission electron microscopy and streaming potential measurements", Environ. Sci. Technol., 41, 942 (2007).   DOI   ScienceOn
20 J. S. Jensen, Y. F. Lam, and G. R. Helz, "Role of amide nitrogen in water chlorination: Proton nmr evidence", Environmental Science and Technology, 33, 3568 (1999).   DOI   ScienceOn
21 R. Singh, "Polyamide polymer solution behavior under chlorination conditions", Journal of Membrane Science, 88, 285 (1994).   DOI   ScienceOn
22 J. Zabicky, "The chemistry of amides", Interscience (1970).
23 J. Glater and M. R. Zachariah, "Mechanistic study of halogen interaction with polyamide reverse- osmosis membranes", ACS Symp Ser., 345 (1985).
24 J. E. McMurry, "Organic chemistry", Brooks Cole (2003).
25 C. Baird and M. Cann, "Environmental chemistry", W.H.Freeman and Company (2008).
26 C. Ingold, "Structure and mechanism in organic chemistry", Cornell University Press (1953).
27 Y.-N. Kwon, S. Hong, H. Choi, and T. Tak, "Surface modification of a polyamide reverse osmosis membrane for chlorine resistance improvement", Journal of Membrane Science, 415, 192 (2012).
28 K. J. P. Orton, F. G. Soper, and G. Williams, "The chlorination of anilides. Part iii. N-chlorination and c-chlorination as simultaneous side reactions.", Journal of the Chemical Society, 998 (1928).   DOI
29 J. Salzman, "Drinking water", Overlook Hardcover (2012).
30 E.-H. Kim, M. Dwidar, R. J. Mitchell, and Y.-N. Kwon, "Assessing the effects of bacterial predation on membrane biofouling", Water Res., 47, 6024 (2013).   DOI   ScienceOn
31 J. E. Gu, B. M. Jun, and Y. N. Kwon, "Effect of chlorination condition and permeability of chlorine species on the chlorination of a polyamide membrane", Water Res., 46, 5389 (2012).   DOI   ScienceOn