DOI QR코드

DOI QR Code

Change of Surface Morphology with the Spreading Rate of Organic Solution During Interfacial Polymerization for Polyamide-based Thin Film Composite Membrane Manufacturing Process

폴리아마이드계 박막복합막 제조 공정에서 계면중합의 유기용액 퍼짐 속도에 따른 표면 모폴로지의 변화

  • Park, Chul Ho (Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER))
  • 박철호 (한국에너지기술연구원, 제주글로벌연구센터)
  • Received : 2017.11.20
  • Accepted : 2017.11.30
  • Published : 2017.12.31

Abstract

The interfacial polymerization method has been applied to various fields as a reaction in which reactive monomers dissolved in two immiscible solutions cause polymerization at the interface. In the case of water treatment membranes, m-phenylene diamine and trimesoyl chloride are used as reactants. The performance of the membrane is affected by various polymerization factors. In this study, we investigated how the spreading rate of the organic solution influences the surface and structure of the membrane. Spreading rate of organic solutions was adjusted to 7.6 and 25 mm/sec. The solution volume of the organic phase was adjusted to 1~3 drops. The observed results showed that cracks were not found in the polyamide membrane when dropping at a drop of 7.6 mm/sec and dropping two drops at 25 mm/sec. On the other hand, cracks occurred in all cases. Therefore, the spreading rate of the initial organic solvent is expected to greatly affect the performance of the polyamide membrane.

계면중합법은 혼합되지 않은 두 용액에 용해되어 있는 반응성 단량체들이 계면에서 중합되는 기술로 다양한 분야에 응용되고 있다. 이 중, 수처리 분리막의 경우 m-phenylene diamine과 Trimesoyl chloride를 반응물로 사용하고 있다. 분리막의 성능은 다양한 중합 성능에 의해 영향을 받고 있으며, 본 연구에서는 유기 용액의 퍼짐 속도가 어떻게 분리막 표면 및 구조에 영향을 주는지를 주사전자현미경을 통해 고찰하였다. 퍼짐 속도는 7.6과 25 mm/sec로 조절하였으며, 유기상 용액은 1~3방울까지 조절하였다. 관찰된 결과는 퍼짐 속도가 7.6 mm/sec에서는 한 방울 떨어트릴 경우, 25 mm/sec에서는 두 방울 떨어트릴 경우 폴리아마이드 막에 균열을 발견할 수 없었다. 반면 나머지 경우에 모두 균열이 발생하였다. 따라서, 초기 유기용액의 퍼짐 속도는 폴리아마이드 분리막의 성능에 영향을 줄 것으로 관찰되었다.

Keywords

References

  1. N. L. Le and S. P. Nunes, "Materials and membrane technologies for water and energy sustainability", Sustain. Mater. Technol., 7, 1 (2016).
  2. R. P. Lively and D. S. Sholl, "From water to organics in membrane separations", Nat Mater., 16, 276 (2017). https://doi.org/10.1038/nmat4860
  3. R. Nadler and S. Srebnik, "Molecular simulation of polyamide synthesis by interfacial polymerization", J. Membr. Sci., 315, 100 (2008). https://doi.org/10.1016/j.memsci.2008.02.023
  4. C. H. Park, "Viscosity effect of organic solvent on the fabrication of polyamide thin film composite membrane via interfacial polymerization", Polym. Korea, 40, 954 (2016). https://doi.org/10.7317/pk.2016.40.6.954
  5. L. Huang and J. R. McCutcheon, "Impact of support layer pore size on performance of thin film composite membranes for forward osmosis", J Membr. Sci., 483, 25 (2015). https://doi.org/10.1016/j.memsci.2015.01.025
  6. P. G. Ingole, W. K. Choi, I.-H. Baek, and H. K. Lee, "Highly selective thin film composite hollow fiber membranes for mixed vapor/gas separation", RSC Adv., 5, 78950 (2015). https://doi.org/10.1039/C5RA15199F
  7. P. G. Ingole, W. K. Choi, G. B. Lee, and H. K. Lee, "Thin-film-composite hollow-fiber membranes for water vapor separation", Desalination, 403, 12 (2017). https://doi.org/10.1016/j.desal.2016.06.003
  8. P. G. Ingole, K. H. Kim, C. H. Park, W. K. Choi, and H. K. Lee, "Preparation, modification and characterization of polymeric hollow fiber membranes for pressure-retarded osmosis", RSC Adv., 4, 51430 (2014). https://doi.org/10.1039/C4RA07619B
  9. T. Tsuru, S. Sasaki, T. Kamada, T. Shintani, T. Ohara, H. Nagasawa, K. Nishida, M. Kanezashi, and T. Yoshioka, "Multilayered polyamide membranes by spray-assisted 2-step interfacial polymerization for increased performance of trimesoyl chloride (TMC)/m-phenylenediamine (MPD)-derived polyamide membranes", J. Membr. Sci., 446, 504 (2013). https://doi.org/10.1016/j.memsci.2013.07.031
  10. S.-J. Park, W.-G. Ahn, W. Choi, S.-H. Park, J. S. Lee, H. W. Jung, and J.-H. Lee, "A facile and scalable fabrication method for thin film composite reverse osmosis membranes: Dual-layer slot coating", J. Mater. Chem. A, 5, 6648 (2017). https://doi.org/10.1039/C7TA00891K
  11. C. H. Park, H. Bae, S. J. Kwak, M. S. Jang, J.-H. Lee, and J. Lee, "Interconnection of electrospun nanofibers via a post co-solvent treatment and its open pore size effect on pressure-retarded osmosis performance", Macromol. Res., 24, 314 (2016). https://doi.org/10.1007/s13233-016-4044-2
  12. M. Fasano, T. Humplik, A. Bevilacqua, M. Tsapatsis, E. Chiavazzo, E. N. Wang, and P. Asinari, "Interplay between hydrophilicity and surface barriers on water transport in zeolite membranes", Nat. Commun, 7, 12762 (2016). https://doi.org/10.1038/ncomms12762
  13. P. Asinari, "Desalinating sea water: Towards novel desalination membranes with enhanced performance", Membr. Technol., 2017, 10 (2017).